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Often interesting aspects of the differences between two populations are obscured by
growth or other age effects. If there are £ such effects all represented as direction cosines
given as the columns of the » X £ matrix K, where v is the number of variates then,
as is well known, Q@ = I—K(K’K)-1K’ projects every sample value onto a space
orthogonal to K and these projected values are free from the age effects. Hence, when
there are p populations all with the same K, canonical variates 1 can be found by
solving

QB—W)Ql =0 ¢y

where B and W are the between population_and pooled within population dispersion
matrices. It is shown that the solutions to (I) are consistent with a somewhat different
formulation of the problem put forward by Burnaby (1966). This requires the solution
of

(CB—AD1=10 1)
where C=W-1-W-1K(K'W-1K)-1K'W-1,

The approach given here allows the theory to be unified with the classical theory
(ie. when Q =1I) but leads to some computational problems because QWQ is only
of rank v—#4 and has no ordinary inverse. Equation (I) may be solved by using any
generalized inverse (in Rao’s sense) of QWQ (of which C is a special case).

In many applications, it is more appropriate to replace B by G’G, the wnweighted
between population dispersion matrix, where G is the p X v matrix of the population
means. In this case, the canonical variates and their mean values can be computed by
first finding the roots and vectors of the symmetric matrix GCG’. This has certain
computational and statistical advantages over other methods.

The results are illustrated by a simple example.

For these results to be of practical value, some means of estimating K is required.
Two situations can be recognised; (a) when concomitant variables, such as age itself
or variables whose values are known to be associated with age, are available; (b) when
estimation must be based only on internal evidence. Two possible estimation processes
for both situations are discussed.

John C. Gower, Rothamsted Experimental Station, Harpenden, Herts., United Kingdom,
15t March, 1976.

is otherwise of little value, unless the elements of

Prefatory note

The following paper is a slightly revised version of
a draft written in 1967 when I was visiting the
Bell Telephone Laboratories, Murray Hill, N.J.
This was shortly after the use of generalised in-
verses, which are now commonplace in statistical
work, had become widely accepted. The first part
of the paper shows how Burnaby’s (1966) results
can be recast in terms of generalised inverses.
His matrix C (see equation 2) is just one form
of the generalised inverse of the usual within-
groups dispersion matrix, corrected for linear
growth effects given as the columns of a matrix K.
This use of generalised inverses unifies the theory
with that of classical canonical variate analysis but

K can be estimated. The second part of the paper
discusses several approaches to this estimation
problem.

Rao (1966) published a theoretical paper, also
to some extent inspired by Burnaby’s work, but
which concentrates on discrimination aspects and
hence on two populations. He shows that Burna-
by’s form can be derived in three different ways
using (a) a sufficient statistic, (b) an ancillary
statistic and (c¢) the method of maximum likeli-
hood ratio. These results all conform with that
given by maximising the ratio of two quadratic
forms, the method also used by Burnaby. Rao does
not discuss estimation problems.

I have not attempted to publish this work
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earlier because of reservations concerning the esti-
mation methods proposed. At the very least, I felt
that the methods should be tried out on real data
but none has hitherto been accessible to me. In
the companion paper, Reyment & Banfield (1976)
now show how the methods behave with palaeonto-
logical data. This is an ideal field of study because
samples from fossil populations are likely to
contain individuals at various stages of growth.
They are also likely to contain individuals from
the different sexes whose differences might be
eliminated by associating dummy “growth” variates
with the sexes.

In the years between the original preparation
of this paper and the present, I know of no serious
attempts to deal with these problems. Now that
suitable data have become available, it seems
desirable to put forward this material in a more
generally available form so that readers may judge
for themselves whether these methods have yet
reached a stage where they are useful, and perhaps
be stimulated to offer improvements.

1. Introduction

Burnaby (1966) considered the problem of finding
canonical variates when the desired comparisons
amongst populations are partially confounded with
growth effects, or similar components, representable
as gradients. With 4 components and v variates,
the effects which are to be eliminated may be
represented by a v X 4 matrix K whose 7t column
consists of elements proportionate to the direction
cosines of the " component. If there are p popu-
lations with common dispersion matrix W and
between population matrix B then, using Lagrange
multipliers, Burnaby found the linear combination
of the original variates, whose coefficients 1
maximize the ratio of between and within sums
of squares I’'Bl/I'WI1, subject to the restrictions
I'W1 = constant and K'l = 0. His solution satis-
ties

(CB—1D1=0 (1)

where
C=W-1—-W-1K(K'W-1K)-1K'W-1 (2)

and the ratio I'BI/I'W1 =,

Thus A and 1 are a latent root and vector pair of
CB, where the vectors 1 have been constrained
to be orthogonal to the space spanned by the di-
rections K representing growth factors.

The idempotent symmetric matrix M=
K(XK'K) - 1K’ projects any v X ! vector y onto
the space spanned by the vector K, and Q =1—
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M projects onto a space orthogonal to K. Thus y
can be resolved into components My confounded
with growth factors and components Qy free
from the effects of growth factors. To find canoni-
cal variates free from the growth effects, the
intuitive statistical approach is to work in terms
of the unconfounded components Qy. This is
effectively what Delany & Healy (1964) did,
except that they used a regression technique to
eliminate growth effects and estimated the re-
gression coefficients from the data (see section 7.3,
below). Working with the unconfounded compo-
nents, the between and within population disper-
sion matrices are QBQ and QWQ so the canoni-
cal variate coefficients are the vectors 1 satisfying

(QBQ— 2 QWQ)1 =0
ie. QB—IW)Ql= 0. 3)

Below, a simple relation between the solutions
of (1) and (3) is demonstrated which allows the
special theory for the elimination of growth effects
to be absorbed in the usual theory, provided
generalized inverses of matrices are freely used.
Then some results I obtained previously (Gower
1966a, b) are extended to fit into this more
general theory and used as a basis for the calcula-
tion of D2 and canonical variate values. Finally,
four methods are discussed that might be used
for estimating K from data.

2. Equivalence of the two equations

We require the following algebraic identities

QK=K'Q=0 (4)
QC=CQ=C (5)
CwWQ=QWC=4Q. (6)

(4) follows directly from the definition of Q
and (6) follows from (4) and (2); (5) follows
from the multiplication of Q and C and some
algebraic manipulation.

Pre-multiplying (3) by C and using (5) and
(6) gives:

(CB—ADQl=0. (7

This is of the same form as (1) but with Ql
in place of 1 showing that if A and 1 are a root
and vector pair of (3), then ), Ql are a correspon-
ding pair of (1). Using (4), we have K'(Ql) =0,
so whatever the vectors of (3), 1 must be ortho-
gonal to K. This implies that the vectors of (3)
may have components in the space spanned by
K but these components can be removed by pre-
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multiplying by Q. In fact, because QM =0, it
is easily seen that the vectors of (3) may have
arbitrary components, for if 1 is a solution so is
1-+-Mm, where m is an arbitrary » X/ vector.
The above remarks are very closely related to
problems arising in the solution of sets of linear
equations Al =0 when A is not of full rank.
Rao (1962) discusses these problems and defines
a generalized inverse (or g-inverse) of an m X »
matrix A as an # X m matrix A™, such that for
any y for which Ax —y is consistent, x = A~y
is a solution. Rao establishes many properties of
g-inverses amongst which he shows that if A~
is a g-inverse then AATA = A, and conversely.
We note that C is a g-inverse of QWQ and vice
versa, for using (5) and (6) repeatedly gives:

(QWQ)C(QWQ = QW[QCQIWQ
= QW[CWQ] = QWQ

and

cC(QWQ)C =[CcQIlwQC =[CwQ]C=QC =C.

3. Interpretation in terms of D?

In this section, we require the most general form
of g-inverse of a matrix A, given a particular g-
inverse A~. Rao (1962) shows that if ax =1y
admits a solution x — A~y for all y consistent
with the equations, then all solutions can be ex-
pressed in the form x = A~ y+ (I—H)z where
H—=A"A and z is arbitrary. If R is a g-inverse
of A, then ARA — A, showing that x = RA,
y = A are consistent solutions of Ax —1y, and
hence:

RA = A"A+(I—H)Z, where Z, is an arbitrary

matrix.

Similarly AR=AA™+Z,(I—J) where J=

AA™ and Z, is arbitrary.

This last equation may be written
AR=1+(Z,—I)I-1J).

Repeating the argument with the columns of R
as successive variables gives:

R=A"4+A(Z,—DHI-J)+A-—H)Z;.
Thus
R=A"4+Ud-I)+d—H)V (8)

1)  Rao (1967) gives another form of general g-inverse:
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where U and V are arbitrary is a general expression
containing all g-inverses of A1). It can be verified
directly that ARA = A for all U and V.

We have shown above the C is a g-inverse of
QWQ, and conversely. In this case, H = CQWQ
=Q, and J=QWQC =Q, by equations (5)
and (6). Thus, the general g-inverse is of the
form

(QWQ)~ = C+UM+MYV, )

and Burnaby’s special case is obtained by setting
U and V to zero. Simple algebraic manipulation
establishes that:

Trace (C+UM-+MV) (C+UM-+MV)
—=Trace (C’C)+ Trace (UM+MV) (UM -+ MYV)

showing that Burnaby’s inverse has the smallest
Lo-norm amongst all generalized inverses of QWQ;
this suggests that C has good properties for com-
putation.

Suppose the mean values for p populations are
given in a p X v matrix G whose it row gives
the mean g; of the it population, then GQ is the
projection of the means onto the Q-space. Fol-
lowing the appendix to Gower (1966 a), the Maha-
lanobis D2 distance between the projections of
the 7% and % populations onto the Q-space is:

D = (g,—2)QQWQ)~Q(g,—g)’
= (g;—g)C(g,—g)

This is identical to the form proposed by Burnaby
(1966) but we have shown here that the value

of D does not depend on the particular choice
of the g-inverse of QWQ.

As might be expected, this result can be put
into more general terms, for if Wg = W™+
I—H)L+M{I—J) is a general g-inverse of W
then for W5 d (where 0"’ =g;—g;) to be in-
variant we must have:

JdA—H) =J-J)d=0.
If the symmetric inverse C is used, the second
condition is merely the transpose of the first, so

necessary and sufficient conditions for the uni-
queness of D2 are that

d=WC . (11)
When W is not of full rank, there will be

R =A™ +W-HWJ
which uses only one arbitrary matrix W, and may therefore seem to conflict with (8). However setting
W=UI—-J)+d—H)V shows that R, contains the solution of form R. Also setting U=W, V=WJ
shows that R contains the solutions of form R,. Therefore, both forms are equivalent.
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linear constraints WK = 0 on its rows and there-
fore k = (I—H)z (z arbitrary). Hence, k'd = 2’
(d—H'd) and, therefore, if d is to be chosen so
that W ~d is unique, we must have by (11),
k’ d = 0. This condition is satisfied when, as is
usual, the mean values are the sums of variate
values which are constrained in the same way as
the rows of W. The columns of K specify a set
of linear constraints on corrected variate values
XQ, which are of the required form because K'Q
=0.

Burnaby defines Dy = D2—D{ . A causal rea-
ding of his paper may suggest that D2 has been

z 2
resolved into orthogonal components D§ and D j
but this is not so; the additivity merely reflects

the definition of Dj; which is interpreted as the
amount of distance lost through working only in
the Q-space.

If R is any g-inverse of QWQ, and 1 is any
vector satisfying (RQBQ—)I)l =0, then it is
easy to see (by substituting (9) for R and then
pre-multiplying by Q) that QI also satisfies (7).
Thus if computer programs are available for
computing g-inverses, it is not necessary to use
Burnaby’s particular g-inverse C, although this is
a convenient analytical form. In fact, g-inverses can
be conveniently computed by using most of the
standard matrix inversion algorithms, modified so
that any prospective division by zero is ignored.
Programs modified in this way will still provide
the regular inverse of matrices of full rank. If
C is required, it can always b computed from

R by evaluating QRQ.

4. Reference of means to canonical axes

Gower (1966 b) pointed out that when canoni-
cal variates are used for descriptive purposes, the
equation (G'G—AW)1 = 0 should be solved rather
than (B—AW)l = 0. The columns of G are as
sumed to be measured from an origin representing
the unweighted overall mean of the population
means (ie., the column sums of G are zero and
its rank is Min(p —1,#)). Thus, G’G is the matrix
of unweighted sums of squares and products be-
tween populations, whereas B is the corresponding
weighted sums of squares and products matrix.
The reason for preferring the unweighted matrix
will become clear below.

Replacing B by G'G in (3) gives

QG'G—\W)Ql =0. (12)
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which has solution vectors X and roots L (say) so
that

QG'GQX = QWQXL (13)
and the means P of the canonical variates are
GQX =P. (14)

The rows of P may be regarded as the coordina-
tes of the means referred to canonical variate
axes. These coordinates may be found by solving
(CG'G—M)I=0 to give L and X and then
substituting in (14). If the vectors are scaled such
that

XQQQ=¢(, (15)

then the squared distance between a pair of means

is the corresponding value of D§.Gower (1966
a) showed that the canonical axes have the pro-
perty that the vectors corresponding to the first 7
roots are the » principal components of a set of p
points, representing the population means, whose
(1/2)p(p—1) Euclidean distances are the values
of D2 but that this is not true if B is used in
place of G'G.

A shorter more direct proof of this property is
given below, adapted to the situation where growth
effects are to be eliminated.

Pre-multipliyng (14) by GCG’ gives

GCGE P=GCG'GQX
= GC(QG'GQX) [by (5)]
= GC(QWQXL) [by (13)]
— GQXL [by (5) and (6)]
=PL [by (1491  (16)

Thus P are the latent vectors of GCG’ =T (say)
and L are the corresponding latent roots. T is a
p X p matrix, P is p X v and Liisadiagonal v X v
matrix. The ranks of G and C are Min(p—1,v)
and (v—#£), respectively, (unless there are so few
sample values that the ranks are further reduced).
Thus there are Min(p—1,v—£) non-zero latent
roots appearing in the diagonal elements of L.
Because the column sums of G are zero, the row
(and column) sums of T are all zero and there-
fore T has a least one zero root, with corresponding
unit latent vector. The remaining columns of P
being orthogonal to this unit vector must sum to
zero. Scaling the vectors so that

PP—L (17)

therefore ensures (a) that the rows of P are the
coordinates of points referred to principal axes
and (b) that

I— PP (18)
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The squared distances between the 7th and j® points
are therefore

viittii— 2235 (19)
Substituting g,Cg; for t; in (19) shows the squa-
red distances are D§ as required. The scaling (17)
ensures that the coordinates on an axis correspon-
ding to a zero root are all zero so they need never
be computed.

It remains to show that the two sets of scaling
given by (15) and (17) are consistent. Pre- and
post-multiplying (15) by G and G’ and using (14)
gives

PP =GCG =T

as in (18). Thus the two sets of scaling are
equivalent.

5. An alternative method of calculating
the canonical variates

The above results are not only of academic interest
for they provide an alternative method of calcula-
tion to that given by Burnaby (1966). Most
methods of solving (1) aim at providing a sym-
metric matrix for the latent root and vector pro-
cess. This has the computational advantage that
a symmetric and positive semi-definite matrix, as
in the present and most other cases in multivariate
statistics, has non-negative roots and real vectors.
This property saves special programming to cope
with arithmetic operations on complex numbers
and therefore allows more efficient algorithms to
be used.

T is already in the desirable symmetric form
and can be readily computed by the standard pro-
cesses of matrix inversion, multiplication and sub-
traction. The vectors of T, scaled as in (17), im-
mediately give the values of the means referred to
canonical axes and we now show that vectors QX
satisfying (12) are also easy to compute from a
knowledge of the roots and vectors of T. Multi-
plying (14) by QG’ and using (13) gives

QG'P = QWQXL. (20)
Pre-multiplying (20) by C and using (5) and (6)

gives

CG'P = QXL.
Hence

QX = CG'PL~-

where L™ is the g-inverse of L obtained by in-
verting all non-zero (diagonal) elements of L. Thus

(21)
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(21) enables the required projections of X onto
the Q-space to be calculated.

Other advantages of using T are (i) that by
using (19) it gives a simple direct way of evalua-
ting DS which requires hardly any special compu-
tation and (ii) that often T is a smaller matrix
than C and B.

When T is used, the estimated values of D2
may be corrected for bias. Gower (1966b) out-
lines how this can be done when C=W-1.1In
the present case, the formulae for bias given by
Rao (1952, p. 364) have to be slightly modified.
When all variates are observed in each popula-
tion, the bias in D is approximately (1/7;—
1/n;) Trace (CQWQ), where #; is the sample size
of population 7. We have

Trace (CQWQ) = Trace (CWQ) = Trace (Q)

=v—é.

The first two steps above follow from (5) and (6)
and the last because Q is idempotent with rank
(v—£&). Thus, to correct for bias, subtract (v— &)
(1/n;+1/n;) from D,‘; The simplest way of
effecting this correction is to subtract (v—&)/n;
from the 7t diagonal element of T and then
evaluate a new matrix T* with elements z;—¢;
—¢;j+¢ . T* will have rank (p—1), even though
T itself may have lower rank, and it may not
be positive semi-definite.

6. Example

The calculations are illustrated using Burnaby’s
(1966) dummy example in which there are
three variates (v = 3), two populations (p =2),
and two sets of constraints (£ = 2). We are given

10 2
W— 042)

2 2 6

o2 1
G= <—1% = —1)
/1 4 3

In the above, the origin of the general mean has
been shifted so that the column sums of G are
zero.

We can compute

4 2 —4
C=1/8 2 1 —2)
—4 =2 4

which has rank (v—k) =1.
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Hence
, 1 —1

The latent roots of T are 9/4 and 0 and the
vectors scaled so that their sums of squares are
equal to these roots are the columns of

3/22 0
P:(—S/zv7 0>'

The rows of P are the coordinates of the means
referred to canonical variate axes (in this case
there is only one non-null axis). The distance
between the two points represented by P is
=1[3/2V2)—(—3/\V 2))]2 =4}, as obtai-
ned by Burnaby; the same value can be obtained
from T because Dg) =111 +¢22 _2t12 —43%. The
canonical variate loading coefficients are obtained
by calculating QX = CG'PL™. We have shown
that L =diag (9/4,0) and therefore L™ —diag
(4/9,0). In fact, only the first column of L~ is
relevant because zero roots correspond to dimen-
sions in which there is no variation and may there-
fore be ignored. The computed value of (CG'PL)’
is (2,1,—2)/(2V 2). This value is proportional to
that obtained by Burnaby which is sufficient for
direction cosine purposes, but the present value
gives the correct coordinate values for D2 purposes
at can be verified by calculating GXQ. This agree-
ment is rather fortuitous as Burnaby has implicitly
defined the between population sums of squares
and products matrix B by G'G; if he had in-
troduced unequal population sizes and used the
usual weighted sums of squares and products, the
two results would have differed. The extent of
this difference would depend on the disparity of
the two sample sizes.
A final check on the calculations can be obtai-
ned by verifying that the scaling agrees with
eqpation (15), ie, (@X)(QX) =C.

7. Estimation of K

So far we have assumed that the same values K
apply to all populations. In practice this is not
likely to be a reasonable assumption and it would
usually be wise to examine each population se-
parately before estimating K from the pooled
populations. Significance tests require to be deve-
loped to help judge whether two matrices K;
and K; extracted by the methods given below
from populations 7 and § may be regarded as span-
ning the same space; note that the individual
elements of K; and K need not agree.
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If separate correction matrices are applicable
to each population, but the corrected dispersion
matrices are homogeneous, we should evaluate

14

ZQ,-W,Q,- as the pooled within-population dis-
i=1

persion matrix after correcting for growth effects.
The population means G; of the " population
would be similarly converted to G;Q; and used
to evaluate a corrected between-population dis-
petsion matrix, using a weighted or unweighted
version, as was felt appropriate With this

approach, it is unlikely that Z Q;W,Q; would

be singular, so no special problems of the kind
discussed above would occur.

In the remainder of this section, the estimation
of K is discussed. The procedures may be regarded
as appropriate to a single population or, when
matrices are pooled over populations, as appro-
priate to the combined populations.

Two distinct situations occur. Either the matrix
K has to be estimated from the data on the original
set of v variates (imternal estimation) or, rather
in the manner of covariance analysis, data on con-
comitant varizbles are available (external estima-
tion). For example, the age of each sample or the
value of a variate highly correlated with age might
be recorded or in botanical problems, pH and
moisture in the soil around each plant and distance
from shelter might be recorded as concomitant
variables for external estimation. The variates and
concomitant variables might need transformation
to approximate the linear relationships assumed
here.

7.1. Internal estimation by principal components

The results of Jolicoeur (1963) suggest that K
can be estimated as the first £ latent vectors of
W. Associated with this method is the difficulty
that the principal components depend on the scales
of measurement of the different variates. This
problem disappears when all scales are the same
or if normalized variates are used. Jolicoeur (1963)
points out that in biological problems, the loga-
rithms of the variates are usually related linearly,
and that taking logarithms is one way in which
the principal components can be made scale-free.
Under these circumstances, the proposed method
of estimation seems intuitively reasonable, provided
that the growth effects are the major source of
variation within each population. In this case, the
elliptical cloud of points representing within-po-
pulation samples would be spread out around an
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elongated major axis (the direction of the princi-
pal component).

If this method of estimation is used, the matrix
C, (corresponding to C) can be simplified. Sup-
pose the columns of K are the first £ latent vectors
of W then

WK =KL,

where L, is the diagonal matrix containing the
first £ latent roots of W. We can assume the
vectors are scaled so that K'K =1, hence

KW 'K=L;1
and therefore
C,=W-1-W- 1IKL,K'W-1
=W-1—-W-1WKK'W-1

= I—-KK)W-1
= QW-1,

To emphasise the symmetric nature of C,, notice
that

C,=QW-1=Ww-1Q
and therefore
QW-1Q=Q@QW-1) =QW-1=C,.
Thus we may write

C,—=QW-1=W-1Q =QW-1Q. (22)

This is a particularly simple form of g-inverse.
Several methods of computing its value suggest
themselves:

(i) Compute QW -1,
(i) QW-1Q =W-1—KL, 'K’

(iii) If all the vectors of W have been computed
and those remaining after K have been remo-
ved are K, _;, with associated roots L, _, use

QW-1Q =K, L, } K, ,

(iv) Compute R, any g-inverse of QWQ, then
QW-1Q =QRQ.

Method (iv) is as suggested before, and has the
advantage that it is independent of the form of Q.
One of the other methods may be useful in in-
vestigations when only the principal component
estimation of K is of interest. We also have from
(22)

QW-1IM =MW-1Q = 0. (23)

The results (22) and (23) can be used to show
that in this instance, D2 may be resolved into
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components representing growth effects and com-
ponents orthogonal to growth. We consider

GW-1G'=G(Q+M)W-1(Q+M)G
=GQW-1Q)G'+GMW-1M)G'".
(24)

Using equation (19) shows that

D2 =D +Dj;.

7.2. Internal estimation by factor analysis

An alternative method of estimation suggested by
Tessier (1955), and recently investigated further
by Hopkins (1966), is to take K as the factor
loadings associated with the factor analysis of W
with £ factors. The rationale behind this method
is that if growth is assumed linear for an indivi-
dual, then the value x; of the 7% variate can be
written

xp—x; = M, (25)

Here I; is the cosine of the angle between the
direction of growth and the 7t variate, and x; is
some arbitrary reference point, here taken as the
mean value of the /! variate in the whole popula-
tion; A represents the distance along the line of
growth from the reference point. Each member
of the population will have its own reference
point and the variation of these reference points
with respect to an origin can be represented by
an additional term in (25) to give

x,-—.i',- = M;“F{?‘:‘

When there are £ age effects, this equation be-
comes
k

=% = hiy+e (26)
FES|

This has the general form of the fundamental
equation of factor analysis and may be written in
vector notation as

x =Li+e

where L is the v )X £ matrix of factor loadings.
The values of }; will vary in the population
(representing the age structure) and correspond to
factors in the factor-analytical model. In allometric
problems, it is the values of /; (the factor loadings)
which require estimation, but in the case under
discussion we only require to eliminate these
effects from the ¢; (the specific factors). In factor
analysis, it is usual to assume that the factors };
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and the ¢; are independent and this seems a
reasonable assumption here.

However, in factor analysis, the different e¢;
are assumed independently distributed with diago-
nal dispersion matrix V. This assumption is un-
justified here as it amounts to assuming that after
eliminating age effects, all variates are independent
of each other. With V not diagonal, the maximum
liklihood estimates of Li and V (on the assumption
that the x; are distributed in multivariate normal
form) become degenerate, admitting any v X 4
matrix L of the rank £ and V= W —LL/ as solu-
tions. This solution includes the principal compo-
nent case where the elements of L are taken as the
first £ latent vectors of W.

The above suggests that even in allometry it
may not be sufficient to estimate L, assuming the
specific factors are independent and that £=1,
as this may involve making the unrealistic assump-
tion that all variates are independently distributed
after eliminating the allometric effect. It might
be better to fit as many factors as seem to be
consistent with the data, presumably being guided
by appropriate significance tests (see, for example,
Lawley & Maxwell (1971 p. 34). The first factor so
found can be taken to estimate allometric effects
and the others describe the correlational structure
after eliminating growth effects; the variances
amongst the specific factors will be additional.
Thus, as in the principal component method, the
maximum variation in the population is attributed
to the allometric effects.

The maximum likelihood estimate of the disper-
sion matrix under these circumstances is

W —=KK'+LL'+V.

and not the sample dispersion matrix W. Here
K gives the loadings for the first £ factors which
are to be associated with growth effects and L
gives the loadings for the remaining factors. We
have

(28)

QWQ —=LL'+QVQ. (29)

The matrix C; corresponding to C can again
be somewhat simplified. If the factor loadings
satisfy the maximum likelihood equations then
(see, for example, Lawley & Maxwell (1971))

W—-V)V-1(KL) = (KL)J (30)
where
J=(KL)V-1(KL).
To obtain a unique solution, J is restricted to
being diagonal (ie, (KL) are latent vectors of

(30) and so the diagonal elements of J are the
latent roots). We require to evaluate C;, and first
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evaluate (K’VAV - 1K) which is the same as KW - 1K
(see, Lawley & Maxwell (1971 p. 27)). Writing
J,=K'V-1K and J; = - L, (30) gives:

WV-1K =K(I+J,)

and hence
KW-1IK=K'V-1KI+J,) -1
=I+3H- (31)
Therefore
=W-1—W-1K(I+J; HK'W-1
—W-1— V-1KI+J,) - 1d+J; HA+J,)-1K'V-1
—W-1-V-1KJ, '1+7J,)-1K'V-1. (32)
Now it can be verified from direct multiplication
by (28) that
W-1=V-1—-V-1KI+J)-1K'V-1

—V-1L{I+J)-1L'V-1,

Substituting into (32) gives
C;=V-1-V-1KJ,'K'V-1-V-
(33)

which in somewhat simpler to compute than the

form (32) which involves W, because the only
matrices to be inverted are diagonal.

7.3. External estimation by regression

Suppose £ concomitant variables have been obser-
ved and are represented by the » X £ matrix X
(n is the sample size). The corresponding data
on the other variates are represented by the 7 X v
matrix Y. The observed variance and covariance
matrices between the two sets of variates may be
written in partitioned form as

k v
E(V U
v\U W/
Ordinary multiple regression techniques estimate

the residuals after eliminating the regression of
Y on the concomitant variables as

(34)

I-X(X'X)-1X)Y (35)

which may be written as Q; Y

Although Q; is idempotent and of similar form
to the matrix Q, previously discussed, the situa-

IL(I+J)-1L'V-1
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tion differs because the dispersion matrix amongst
the residuals is

YyQ,Y (36)

which is, in general, nonsingular; its rank is Min
(vp—k—1). Thus problems arising from the
singularity of QWQ do not occur. This was the
method used by Delany & Healy (1964), in their
study of the Long Tailed Field Mouse, with one
concomitant variable, a measure of tooth-wear,
thought to be a good indicator of age.

A point of computational interest is that (30)
may be written (W—U'V-1U) whose inverse
occurs as the lower right-hand corner matrix in
the inversion of (34). This inverse matrix is
required when computing D2 values or when
using the method given in Section 5.

7.4. External estimation by canonical correlation

Suppose there is one concomitant variable x and
two y-variates (y; and y5). If it were noticed that
x =191 +7yo for all samples it would be normal
to work in the direction orthogonal to y; +9s.
Thus, we are lead to ask which linear combina-
tion of the y’s best predicts x. When there are
several concomitant variables, we look for the set
of linear combinations of the 4’s which best
predicts the space spanned by the x’s or, what is
the same thing, predicts a set of linear combina-
tions of the x’s which span the x-space. The theory
of canonical correlations was designed to answer
questions of this sort. Suppose that £ < v, as is
likely to be the case, and that the coefficient of
the appropriate linear combinations of the x’s
and 9’s are given in matrices L(& X 4) and
M(v X v), respectively. Using the notation of (34),
the equations to be solved are then

UM = VLR’

UL = WMR (38)
where R is a v X £ matrix whose first £ diagonal
elements are known as the canonical correlations
and all others elements are zero; L and M satisfy:

U’'V-1UM = WM(RR) (39)
UW-1UL = VL(R'R)

Only £ canonical correlations will be non-zero
and our estimate Ky of the matrix K is the first
£ columns of the v X v matrix M.

The matrix Cp corresponding to C does not
seem to have a simple form although MM’ may
be substituted for W-1 in equation (2); the
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equivalence of these two forms can be derived
from equation (39).

7.5. Comparison of the two methods of
external estimation

When a unit canonical correlation exists, the
corresponding canonical loadings » derived from
equation (38) satisfy

(U'V-1U—W)m = 0. (40)
Thus, in this case, the dispersion matrix obtained
from the residuals after correcting for the regres-
sion of the y’s on the «x’s by the first external esti-
mation method, will not be of full rank and g-
inverses have to be used. Further, if £=1 in (34),
then V and L are scalars and UW-1U" =V so
that the first row of the matrix (34) is equal to
the linear combination of the v remaining rows,
obtained by pre-multiplying by UW-1 and this
leads us to suspect that W-1 is then a g-inverse
of W—U’V-1U. This is easily verified for

(W—=UV-1IU)W-}(W—-U'V-1U)
=W-=-2U'V-1U+U'V- (UW-1U)V-1U
=W-UV-1U
because
UW-1U = V.

We also note that the corrected values of the
matrix G of population means satisfy Gm = 0,

because if G =Y —XV-1U, the regression cor-
rection, and X = YW-1U’, implied by the unit
correlation, then G = Y(I—W-1U’V - 1U). Now
from (37), m = W-1U’L, so that

Gm=Y(m—W-1U'V-1(UW-1U")L)
=Y(m—m)=0.

Thus since the same linear restrictions apply to
the rows of G as to the rows of (W—Y’'V-1U),
then the values of D2 are, by Section 3, obtained
uniquely from GW-1G’, because W-1 is a g-
inverse of W—U’V -1U. This shows that the age
effects need to be eliminated from G but not from
W-1. The corresponding result when canonical
correlation estimation is used, is given by GC,G’
where Cy, is equation (2) with K = m, but in this
case the two methods must be equivalent.

When £ =1, and the first canonical correlation
is not unity, we still have that m is proportionate
to W-1U". These are the estimates of the regres-



10 J. C. Gower

sion coefficients obtained when the single x-variate
is expressed as a multiple linear regression on the
y-variates. In this sense, the linear combination
amongst the y’s is the best linear predictor of the
x-variate. When there are several x-variates, the
canonical variates which are linear combinations of
the 9’s will still be the best linear predictors of
the space spanned by the x’s. Therefore, the canoni-
cal correlation method is equivalent to the re-
gression method if there is just one concomitant
variate. With two or more concomitant variates,
the canonical correlation method is preferable to
adjusting each y-variate by multiple regression
because this ignores their intercorrelations.
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