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Often interesring aspeers of the differences berween rwo populations are obscured by 
growth or other age effecrs. If rhere are k such effecrs all represenred as direcrion cosines 
given as the columns of the v X k matrix K, where v is the number of variates then, 
as is weil known, Q = l- K(K'K) -1K' projects every sample value onro a s pace 
orthaganal to K and rhese projected values are free from the age effects. Hence, when 
rhere are p populations all with the same K, canonical variates l can be found by 
solving 

Q(B-/.W)Ql =O (I) 

where B and W are the between popularion.and pooled wirhin population dispersion 
matrices. lt is shown char the solutions ro (I) are consistent with a samewhat different 
formulation of the problem pur forward by Burnaby (1966). This requires the solution 
of 

(CB-1.1)1 =O (II) 

where C= W -1-W -1K(K'W -1K) -1K'W -1. 
The approach given here allows the theory to be unified with the classical theory 

(i.e. when Q = l) bur leads to some computational problems because QWQ is only 
of rank v- k and has no ordinary inverse. Equation (I) may be solved by using an y 
generalized inverse (in Rao's sense) of QWQ (of which C is a special case) . 

In many applications, it is more appropriate to replace B by G'G, the unweighted 
berween population dispersion matrix, where G is the p X v matrix of the population 
means. In this case, the canonical variares and their mean values can be compured by 
first finding the roors and vecrors of the symmerric matrix GCG'. This has cerrain 
computational and statisrical advanrages over other merhods. 

The results are illustrared by a simple example. 
For these results to be of practical value, same means of estimating K is required. 

Two situations can be recognised; (a) when concomitant variables, such as age itself 
or variables whose values are known to be associated with age, are available; (b) when 
estimation must be based only on interna! evidence. Two possible estimation processes 
for both situations are discussed. 

John C. Gower, Rothamsted Experimental Station, Harpenden, Herts., United Kingdom, 
Ist March, 1976. 

The following paper is a slightly revised version of 
a draft written in 1967 when I was visiting the 
Bell Telephone Laboratories, Murray Hill, N.J. 
This was shortly after the use of generalised in­
verses, which are now commonplace in statistical 
work, bad become widely accepted. The first part 
of the paper shows how Burnaby's (1966) results 
can be recast in terms of generalised inverses. 
His matrix C (see equation 2) is just one form 
of the generalised inverse of the usual within­
groups dispersion matrix, corrected for linear 
growth effects given as the columns of a matrix K. 
This use of generalised inverses unifies the theory 
with that of classical canonical variate analysis but 

is otherwise of little value, uniess the elements of 
K can be estimated. The seeond part of the paper 
discusses several approaches to this estimation 
problem. 

Rao (1966) published a theoretical paper, also 
to some extent inspired by Burnaby's work, but 
which concentrates on discrimination aspeers and 
hence on two populations. He shows that Burna­
by's form can be derived in three different ways 
using (a) a sufficient statistic, (b) an ancillary 
staristic and (c) the method of maximum likeii­
hoad ratio. These results all conform with that 
given by maximising the ratio of rwo quadratic 
forms, the method also used by Burnaby. Rao does 
not discuss estimation problems. 

I have not attempted to publish this work 
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earlier because of reservations concerning the esti­
rnatian methods proposed. At the very least, I felt 
that the methods should be tried out on real data 
but none has hitherto been accessible to me. In 
the companion paper, Reyment & Banfield (1976) 
now show how the methods behave with palaeonto­
logical data. This is an ideal field of study because 
samples from fossil populations are likely to 
contain individuals at various stages of growth. 
They are also likely to contain individuals from 
the different sexes whose differences might be 
eliminared by associating dummy "growth" variates 
with the sexes. 

In the years between the original preparation 
of this paper and the present, I know of no serious 
attempts to deal with these problems. Now that 
suitable data have become available, it seems 
desirable to pur forward this material in a more 
generally available form so that readers may judge 
for themselves whether these merhods have yet 
reached a stage where they are useful, and perhaps 
be stimulared to offer improvements. 

l. lntroduction 

Burnaby (1966) considered the problem of finding 
canonical variates when the desired comparisons 
amongst populations are partially confounded with 
growth effects, or similar components, representable 
as gradients. With k components and v variates, 
the effects which are to be eliminared may be 
represemed by a v X k marrix K whose r'h column 
consists of elements proportionare to the direction 
cosines of the rth component. If there are p popu­
lations with common dispersion matrix W and 
between population matrix B then, using Lagrange 
multipliers, Burnaby found the linear combination 
of the original variates, whose coefficients l 
maximize the ratio of between and wirhin sums 
of squares l'Bljl'Wl, subject to the restrictions 
l'Wl = eonstant and K'l = O. His solution satis­
fies 

(CB-AI)l =O (l) 
where 

C= W-l_ W-lK(K'W-lK) -lK'W-1 (2) 

and the ratio l'Bl/l'Wl = A. 
Thus }, 2.nd l are a latent root and vector pair of 

CB, where the vectors l have been constrained 
to be orthogonal to the space spanned by the di­
rections K representing growth factors. 

The idempotent symmetric matrix M = 
K(K'K) -1K' projects any v X l vector y onto 
the s pace s panned by the vector K, and Q= I-
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M projects onto a space orthogonal to K. Thus y 
can be resolved into components My confounded 
with growth faceors and components Qy free 
from the effects of growth factors. To find canoni­
cal variates free from the growth effects, the 
intuitive statistical approach is to work in terms 
of the unconfounded components Qy. This is 
effectively what Delany & Healy (1964) did, 
except that they used a regression technique to 
eliminare growth effects and estimated the re­
gression coefficients from the data (see section 7.3, 
below). Working with the unconfounded compo­
nents, the between and wirhin population disper­
sion matrices are QBQ and QWQ so the canoni­
cal variare coefficients are the vectors l satisfying 

(QBQ-JcQWQ)l =O 
(3) i.e. Q(B-AW)Ql = O. 

Below, a simple relation between the solutions 
of (l) 2.nd (3) is demonserared which allows the 
special theory for the elimination of growth effects 
to be absorbed in the usual theory, provided 
generalized inverses of matrices are freely used. 
Then some results I obtained previously (Gower 
1966 a, b) are extended to fit into this more 
general theory and used as a basis for the calcula­
tion of D2 and canonical variare values. Finally, 
four methods are discussed that might be used 
for estimating K from data. 

2. Equivalence of the two equations 

W e require the following algebraic identities 

QK=K'Q=O 
QC=CQ=C 
CWQ=QWC=Q. 

(4) 

(5) 
(6) 

( 4) follows directly from the definition of Q 
and (6) follows from (4) and (2); (5) follows 
from the multiplication of Q and C and some 
algebraic manipulation. 

Pre-multiplying (3) by C and using (5) and 
(6) gives: 

(CB-AI)Ql=O. (7) 

This is of the same form as (l) but with Ql 
in place of l showing that if A and l are a root 
and vector pair of (3), then A, Ql are a earrespon­
ding pair of (1). Using (4), we have K'(Ql) =0, 
so whatever the vectors of (3), l must be ortho­
gonal to K. This implies t hat the vectors of ( 3) 
may have components in the space spanned by 
K but these components can be removed by pre-
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multiplying by Q. In fact, because QM = O, it 
is easily seen that the vectors of (3) ma y have 
arbitrary components, for if l is a solution so is 
l+ Mm, where m is an arbirrary v X l vector. 

The above remarks are very closely related to 
problems arising in the solution of sets of linear 
equations Al = O when A is not of full rank. 
Rao (1962) discusses these problems and defines 
a generalized inverse (or g-inverse) of an m X n 
matrix A as an n X m matrix A-, such that for 
an y y for w h ich Ax = y is consis tent, x = A- y 
is a solution. Rao establishes many properties of 
g-inverses amongst which he shows that if A­
is a g-inverse then AA-A= A, and conversely. 
We note that C is a g-inverse of QWQ and vice 
versa, for using ( 5) and ( 6) repeatedly gives: 
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where U and V are arbitrary is a general expression 
containing all g-inverses of A l). It can be verified 
directly that ARA = A for all U and V. 

We have shown above the C is a g-inverse of 
QWQ, and conversely. In this case, H= CQWQ 
=Q, and J= QWQC = Q, by equations (5) 
and ( 6). Thus, the general g-inverse is of the 
form 

(QWQr = C+UM+MV, (9) 

and Burnaby's special case is obtained by setting 
U and V to zero. Simple algebraic manipulation 
establishes that: 

Trace (C+UM+MV)'(C+UM+MV) 
=Trace (C'C)+Trace (UM+MV)'(UM+MV) 

(QWQ)C(QWQ = QW[QCQ]WQ showing that Burnaby's inverse has the smallest 
= QW[CWQ] = QWQ L2 -norm amongst all generalized inverses of QWQ; 

and this suggests that C has good properties for com-
C(QWQ)C = [CQ]WQC =[CWQ]C = QC =C. putation. 

Suppose the mean values for p populations are 

3. Interpretation in terms of D2 

In this section, we require the most general form 
of g-inverse of a matrix A, given a particular g­
inverse A-. Rao ( 1962) shows t hat if ax = y 
admits a solution x= A-y for all y consistent 
with the equations, then all solutions can be ex­
pressed in the form x =  A- y+ (l-H) z where 
H = A- A and z is arbitrary. If R is a g-inverse 
of A, then ARA = A, showing that x = RA, 
y= A are consistent solutions of Ax= y, and 
hence: 

RA=A-A+(I-H)Z1 whereZ1 is an arbirrary 
matrix. 

Similad y AR = AA- + Z2 (l-J) 
AA- and Z2 is arbitrary. 

where J= 

This last equation may be written 

AR= l+ (Z2 -1)(1 -J). 

Repeating the argument with the columns of R 
as successive variables gives: 

R= A- +A-(Z2 -1)(1-J) + (I-H)Z3. 

Thus 

R =  A-+ U(I-J)+(I-H)V (8) 

l) Rao (1967) gives another form of general g-inverse: 

given in a p X v matrix G whose i <h row gives 
the mean g; of the i'h population, then GQ is the 
projection of the means onto the Q-space. Fol­
lowing the appendix to Gower (1966 a), the Maba­
lanabis D2 distance between the projections of 
the i'h and jth populations onto the Q-space is: 

DÖ= (g;-gi)Q(QWQ)-Q(g;-gi)' 
= (g;-gi)C(g;-gj)'. (10) 

This is identical to the form proposed by Burnaby 
(1966) bur we have shown here that the value 

of DÖ does not depend on the particular choice 
of the g-inverse of QWQ. 

As might be expected, this result can be put 
im o mor e general terms, for if W 0 = w- + 
(l-H)L+ M(l -J) is a general g-inverse of W 
then for d'Wc; ö (where d'= gi-gi) to be in­
variant we must have: 

d''(I-H) = (1-J)d'= O. 

If the symmetric inverse C is used, the seeond 
condition is merely the transpose of the first, so 
necessary and sufficient conditions for the uni­
queness of D 2 are that 

d'= WC (11) 

When W is not of full rank, there will be 

Rr =A- +W-HWJ 
which uses only one arbitrary matrix W, and may therefore seem to conflict with (8) . However setting 
W= U(I-J)+(I-H)V shows that Rr contains the solution of form R. Also setting U= W, V= WJ 
shows that R contains the solutions of form Rr. Therefore, both forms are equivalent. 
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linear constraints WK = O on its rows and there­
fore k= (l-H) z (z arbitrary) . Hence, k' o= z' 
(o-H' d) and, therefore, if o is to be ehosen so 
that d'W-o is unique, we must have by (11) , 
k' o= O. This condition is satisfied w hen, as is 
usual, the mean values are the sums of variare 
values which are constrained in the same way as 
the rows of W. The columns of K specify a set 
of linear constraints on correcred variare values 
XQ, which are of the required form because K' Q 
=0. 

Burnaby defines D�= D2- DÖ . A eausal rea­
ding of his paper may suggest that D2 has been 

resolved into orthogonal components DÖ and D lr 
but this is not so; the additivity merely reflects 

the definition of D� which is interpreted as the 
amount of distance lost through working only in 
the Q-space. 

If R is any g-inverse of QWQ, and l is any 
vector satisfying (RQBQ-].,1) 1 =O, then it is 
easy to see (by substituting (9) for R and then 
pre-multiplying by Q) that Ql also satisfies (7) . 
Thus if compurer programs are available for 
computing g-inverses, it is not necessary to use 
Burnaby's particular g-inverse C, although this is 
a convenient analytical form. In fact, g-inverses can 
be conveniently computed by using most of the 
standard matrix inversion algorithms, modified so 
that any prospective division by zero is ignored. 
Programs modified in this way will still provide 
the regular inverse of matrices of full rank. If 
C is required, it can always b computed from 
R by evaluating QRQ. 

4. Reference of means to canonical axes 

Gower (1966 b) pointed out that when canoni­
cal variates are used for descriptive purposes, the 
equation (G'G-P.W) l =O should be solved rather 
than (B-A W) l= O. The columns of G are as 
surned to be measured from an origin representing 
the unweighted overall mean of the population 
means (i.e., the column sums of G are zero and 
its rank is Min(p-1,v)) .  Thus, G'G is the matrix 
of unweighted sums of squares and products be­
tween populations, whereas B is the corresponding 
weighted sums of squares and products matrix. 
The reason for preferring the unweighted matrix 
will become d ear bel o w. 

Replacing B by G'G in (3) gives 

Q(G'G-J,W)Ql =O. (12) 
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which has solution vectors X and roots L (say) so 
that 

QG'GQX=QWQXL (13) 

and the means P of the canonical variates are 

GQX=P. (14) 

The rows of P ma y be regarded as the coordina­
tes of the means referred to canonical variare 
axes. These coordinates may be found by solving 
(CG'G-H)l =O to give L and X and then 
substituting in (14) . If the vectors are scaled such 
that 

XQQ'Q=C, (15) 

then the squared distance between a pair of means 

is the corresponding value of DÖ. Gower (19'66 
a) showed rhat the canonical axes have the pro­
perty that the vectors corresponding to the first r 
roots are the r principal components of a set of p 
points, representing the population means, whose 
(1/2)p(p-l) Euclidean distances are the values 
of D2 but that this is not true if B is used in 
place of G'G. 

A shorter more direct proof of this property is 
given below, adapted to the situation where growth 
effects are to be eliminated. 

Pre-multipliyng (14) by GCG' gives 

GCG' P= GCG'GQX 
= GC(QG'GQX) [by (5) ] 
= GC(QWQXL) [by (13)] 
= GQXL [by (5) and (6)] 
= PL [by (14)] (16) 

Thus P are the latent vectors of GCG' =T (sa y) 
and L are the corresponding latent roots. T is a 
p X p matrix, P is p X v and L is a diagonal v X v 
matrix. The ranks of G and C are Min(p -l, v) 
and (v-k) , respectively, (unless there are so few 
sample values that the ranks are further reduced) . 
Thus there are Min(p-1, v-k) non-zero latent 
roots appearing in the diagonal elements of L. 
Because the column sums of G are zero, the row 
(and column) sums of T are all zero and there­
fore T has a !east one zero root, with corresponding 
unit latent vector. The remaining columns of P 
being orthogonal to this unit vector must sum to 
zero. Scaling the vectors so that 

P'P=L (17) 

therefore ensures (a) that the rows of P are the 
coordinates of points referred to principal axes 
and (b) that 

I=PP'. (18) 
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The squared distances between the i'h and j'h points 
are therefore 

tu+ tjj-2tii. ( 19) 

Substituting g;Cg; for tii in (19) shows the squa­

red distances are D Ö as required. The scaling ( 17) 
ensures that the coordinates on an axis earrespon­
ding to a zero root are all zero so they need never 
be computed. 

It remains to show that the two sets of scaling 
given by ( 15) and ( 17) are consisten t. Pre- and 
post-multiplying (15) by G and G' and using (14) 
gives 

PP' = GCG' = T· 

as in (18) . Thus the two sets of scaling are 
equivalent. 

5. An alternative method of calculating 
the canonical variates 

The above results are not only of academic interest 
for they provide an alternative method of calcula­
tion to that given by Burnaby (1966) . Most 
merbods of solving (l) aim at providing a sym­
metric matrix for the latent root and vector pro­
cess. This has the computational advantage that 
a symmetric and positive semi-definite matrix, as 
in the present and most other cases in multivariare 
statistics, has non-negative roots and real vectors. 
This property saves special programming to cope 
with arithmetic operations on camplex numbers 
and therefore allows more efficient algorithms to 
be used. 

T is already in the desirable symmetric form 
and can be readily computed by the standard pro­
cesses of matrix inversion, multiplication and sub­
traction. The vecrors of T, scaled as in (17), im­
mediately give the values of the means referred to 
canonical axes and we now show that vectors QX 
satisfying (12) are also easy to campute from a 
knowledge of the roots and vecrors of T. Multi­
plying (14) by QG' and using (13) gives 

QG'P = QWQXL. (20) 

Pre-multiplying (20) by C and using (5) and (6) 
gives 

CG'P=QXL. 

Hen c e 

QX=CG'PL- (21) 

where L- is the g-inverse of L obtained by in­
verting all non-zero (diagonal) elements of L. Thus 
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(21) enables the required projections of X onto 
the Q-space to be calculated. 

Other advantages of using T are (i) that by 
using ( 19) i t gives a simple direct way of evalua-

ting D 3 w h ich requires hardly any special compu­
tation and (ii) that often T is a smaller matrix 
than C and B. 

When T is used, the estimated values of D2 
may be corrected for bias. Gower (1966b) Out­
lines how this can be done when C= W-1. In 
the present case, the formulae for bias given by 
Rao (1952, p. 364) have to be slightly modified. 
When all variates are observed in each popula-

tion, the bias in DÖ is approximately (1/n;-
1/nj) Trace (CQWQ) , where n; is the sample size 
of population i. We have 

Trace (CQWQ) = Trace (CWQ) = Trace (Q) 
= v - k. 

The first two steps above follow from (5) and (6) 
and the last because Q is idempotent with rank 
(v-k). Thus, to correct for bias, subtract (v-k) 
(l/n;+ 1/nj) from D;7. The simplest way of 
effecting this correction is to subtract (v-k)/n; 
from the i t h diagonal element of T and then 
evaluate a new matrix T* with elements tii-ti. 
-t.;+t . .. T* will have rank (p-l), even though 
T itself may have lower rank, and it may not 
be positive semi-definite. 

6. Example 

The calculations are illustrared using Burnaby's 
(1966) dummy example in which there are 
three variates (v= 3), two populations (p= 2), 
and two sets of constraints (k= 2) . We are given 

W= ( 6 � �) 
2 2 6 

( H 
-H 

K'= (i i 

2 
-2 

�). 
- D 

In the above, the origin of the general mean has 
been shifted so that the column sums of G are 
zero. 

We can campute 

c= 1/8 ( i i 
-4 -2 

-4 ) -2 
4 

which has rank (v - k) = l. 
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Hence 

T=GCG'=9/8 (-i -l ) 
l . 

The latent roots of T are 9 l 4 and O and the 
vectors scaled so that their sums of squares are 
equal to these roots are the columns of 

P= 
( 3/2V 2 o ) -3/2V 2 o · 

The rows of P are the mordinates of the means 
referred to canonical variare axes (in this case 
there is only one non-null axis). The distance 
between the two points represemed by P is 

2 - -
Do=[3/2V2)-(-3/V2))]2=4i, as obtai-
ned by Burnaby; the same value can be obtained 

from T because DÖ= t11 +t22 -2t12 = 4�. The 
canonical variare loading coefficients are obtained 
by calculating QX = CG'PL- . W e have shown 
that L= diag (9/4,0) and therefore L- = diag 
( 4/9,0). In fact, only the first column of L- is 
relevant because zero roats earrespond to dimen­
sions in which there is no variation and may there­
fore be ignored. The compured value of (CG'PL)' 

is (2,1,-2)/(2V2). This value is proportional to 
that obtained by Burnaby which is sufficient for 
direction cosine purposes, but the present value 
gives the correct coordinate values for D2 purposes 
at can be verified by calculating GXQ. This agree­
ment is rather formitous as Burnaby has implicitly 
defined the between population sums of squares 
and products matrix B by G'G; if he had in­
troduced unequal population sizes and used the 
usual weighted sums of squares and products, the 
two results would have differed. The extent of 
this difference would depend on the disparity of 
the two sample sizes. 

A final check on the calculations can be obtai­
ned by verifying that the scaling agrees with 
eqpation (15) ,  i.e., (QX)(QX)' =C. 

7. Estimatian of K 

So far we have assumed that the same values K 
apply to all populations. In practice this is not 
likely to be a reasonable assumption and it would 
usually be wise to examine each population se­
parately before estimating K from the pooled 
populations. Significance tests require to be deve­
loped to help judge whether two matrices K; 
and Kj extracted by the methods given below 
from populations i and j may be regarded as span­
ning the same space; note that the individual 
elements of K; and Kj need not agree. 
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If separate correction matrices are applicable 
to each population, but the corrected dispersion 
matrices are homogeneous, we should evaluate 

TJ 

LQ;W;Q; as the pooled within-population dis­
i= l 
persion matrix after correcting for growth effects. 
The population means G; of the i'h population 
would be similarly converted to G;Q, and used 
to evaluate a corrected between-population dis­
persion matrix, using a weighted or unweighted 
version, as was felt appropriate. With this 

/1 

approach, it is unlikely that L Q;W;Q; would 
i= l 

be singular, so no special problems of the kind 
discussed above would occur. 

In the remainder of this section, the estimation 
of K is discussed. The procedures may be regarded 
as appropriate to a single population or, when 
matrices are pooled over populations, as appro­
priate to the combined populations. 

Two distinct situations occur. Either the matrix 
K has to be estimated from the data on the original 
set of v variates (internal estimation) or, rather 
in the manner of covariance analysis, data on con­
comitant variables are available (external estima­
tion). For example, the age of each sample or the 
value of a variare highly correlated with age might 
be recorded or in botanical problems, pH and 
moisture in the soil around each plant and distance 
from shelter might be recorded as concomitant 
variables for externa! estimation. The variates and 
concomitant variables might need transformation 
to approximate the linear relationships assumed 
here. 

7.1. lnternal estimation by principal components 

The results of Jolicoeur (1963) suggest that K 
can be estimated as the first k latent vectors of 
W. Associated with this method is the difficulty 
that the principal components depend on the scales 
of measurement of the different variates. This 
problem disappears when all scales are the same 
or if normalized variates are used. Jolicoeur (1963) 
points out that in biological problems, the loga­
rithms of the variates are usually related linearly, 
and that taking logarithms is one way in which 
the principal components can be made scale-free. 
Under these circumstances, the proposed method 
of estimation seems intuitively reasonable, provided 
that the growth effects are the major source of 
variation wirhin each population. In this case, the 
elliptical cloud of points representing within-po­
pulation samples would be spread out around an 
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elongated major axis (the direction of the princi­
pal component) . 

If this method of estimation is used, the matrix 
C,, (corresponding to C) can be simplified. Sup­
pose the columns of K are the first k latent vectors 
of W then 

WK=KL, 

where L" is the diagonal matrix contammg the 
first k latent roats of W. We can assume the 
vectors are scaled so that K'K = Ik hence 

K'W-1 K=Lk'1 

and therefore 

C,= W-1-W-1KLkK'W-1 
=W-l_ W- l WKK'W-l 
= (1-KK')W-1 
=QW-1. 
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components representing growth effects and com­
ponents orthogonal to growth. We consicler 

GW-lG' = G(Q+M)W-l(Q+M)G' 
= G(QW-lQ)G' +G(MW-lM)G'. 

(24) 

U sing equation ( 19) shows that 

7.2. Internat estimation by factor analysis 

An alternative method of estimation suggesred by 
Tessier (1955), and recently investigated further 
by Hopkins (1966) , is to take K as the factor 
toadings associated with the factor analysis of W 
with k factors. The rationale behind this method 
is that if growth is assumed linear for an indivi­
dual, then the value X; of the i'h variare can be 

To emphasise the symmetric nature of C11, notice written 
that 

(25) 
C,,=QW-1 =W-lQ 

and therefore 

QW-1Q = Q(QW-1) = QW-1 =C,,. 

Thus we may write 

C"= QW-1 = W-lQ = QW-lQ. (22) 

This is a panicularly simple form of g-inverse. 
Several methods of computing its value suggest 
themselves: 

(i) Campute QW-l. 
(ii) QW-1Q=W-1-KL,�1K' 
(iii) If all the vectors of W have been computed 

and those remaining after K have been remo­
ved are K v_"' with associated roats L"_" use 

QW-1Q = K"_,L;_\K�_,, 

(iv) Campute R, any g-inverse of QWQ, then 
QW-lQ=QRQ. 

Method (iv) is as suggested before, and has the 
advantage that it is independent of the form of Q. 
One of the other methods may be useful in in­
vestigations when only the principal component 
estimation of K is of interest. W e also have from 
(22) 

QW-lM = MW-lQ =O. (23) 

The results (22) and (23) can be used to show 
that in this instance, D 2 ma y be resolved inta 

Here l; is the cosine of the angle between the 
direction of growth and the i'h variate, and X; is 
same arbitrary reference point, here taken as the 
mean value of the i'h variare in the whole popula­
tion; 'A represents the distance along the line of 
growth from the reference point. Each member 
of the population will have its own reference 
point and the variation of these reference points 
with respect to an origin can be represemed by 
an additional term in (25) to give 

When there are k age effects, this equation be­
comes 

k 

x;-x; = l .. h''j+e;. 
j� l 

(26) 

This has the general form of the fundamental 
equation of factor analysis and may be written in 
vector notation as 

x= Ll+e 
where L is the v X k matrix of factor loadings. 

The values of Aj will vary in the population 
(representing the age structure) and earrespond to 
factors in the factor-analytical mode!. In allometric 
problems, it is the values of l; (the factor loadings) 
which require estimation, but in the case under 
discussion we only require to eliroinate these 
effects from the e; (the specific factors) . In factor 
analysis, it is usual to assume that the factors Aj 
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and the ei are independent and this seeros a 
reasonable assumption here. 

However, in factor analysis, the different ei 
are assumed independently distributed with diago­
nal dispersion matrix V. This assumption is un-
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evaluate (K'W-1 K) which is the same as K'W-l K 
(see, Lawley & Maxwell (1971 p. 27)) .  Writing 
J k= K'V-1K and J1 = L'V- L, (30) gives: 

WV-1K = K(I+Jk) 
justified here as it amounts to assuming that after and hence 
eliminating age effects, all variates are independent 
of each other. With V not diagonal, the maximum 
liklihood estimates of L and V (on the assumption 

K'W - l K= K'V -1K(I +J,,) -1 
=(I+J,�1)-1. (31) 

that the xi are distributed in multivariare normal Therefore 
form) become degenerate, admitting any v X k 

�atrix L .of the :ank.k and V= W:-�L' as solu- C = W-1-W-lK(I+Ji-l )K'W-1 
uons. Thts solution mcludes the pnnopal compo- 1 � 

' 

nent case where the elements of L are taken as the =W-1-V-lK(I +J" )-1(1 +J; 1 )(l +J,,)-1K'V-l 

first k latent vectors of W. 
The above suggests that even in allornetry it =W -l_ V -1KJ,� 1 (l +J,,)-1K'V-1. (32) 

Now it can be verified from direct multiplication 
by (28) that 

W-1 = V-1-V-1K(I+J")-1K'V-1 
-V -1L(I +J1)-1L'V -1. 

may not be sufficient to estimate L, assuming the 
specific factors are independent and that k= l, 
as this may involve making the unrealistic assump­
tion that all variates are independently distributed 
after eliminating the allometric effect. It might 
be better to fit as many factors as seem to be 
consistent with the data, presurnably being guided Substituting into (32) gives 

by appropriate significance tests (see, for example, c1 =V_ 1- V- lKJ,; lK'V-1-V -1L(I +J1) -1L'V -1 
Lawley & Maxwell (1971 p. 34). The first factor so 
found can be taken to estimate allometric effects 
and the others describe the correlational structure 
after eliminating growth effects; the variances 
amongst the specific factors will be additional. 
Thus, as in the principal component method, the 
maximum variation in the population is attributed 
to the allometric effects. 

The maximum Iikelihood estimate of the disper­
sion matrix under these circumstances is 

W=KK'+LL'+V. (28) 

and not the sample dispersion matrix W. Here 
K gives the loadings for the first k factors which 
are to be associated with growth effects and L 
gives the loadings for the remairring factors. W e 
have 

QWQ = LL' + QVQ. (29) 

The matrix C1 corresponding to C can again 
be somewhat simplified. If the factor loadings 
satisfy the maximum Iikelihood equations then 
(see, for example, Lawley & Maxwell (1971)) 

(W-V) V-1(K,L) = (K,L)J (30) 

where 

J= (K,L)'V-l(K,L). 
To obtain a unique solution, J is restricted to 
being diagonal (i.e., (K,L) are latent vectors of 
(30) and so the diagonal elements of J are the 
latent roots) . We require to evaluate C1, and first 

(33) 

which in somewhat simpler to campute than the 

form (32) which involves W, because the only 
matrices to be inverted are diagonal. 

7.3. Externa! estimation by regression 

Suppose k concomitant variables have been obser­
ved and are represenred by the n X k matrix X 
(n is the sample size). The corresponding data 
on the other variates are represemed by the n X v 
matrix Y. The observed variance and covariance 
matrices between the two sets of variates may be 
written in partitioned form as 

(34) 

Ordinary multiple regression techniques estimate 
the residuals after eliminating the regression of 
Y on the concomitant variables as 

(I-X(X'X)-1X')Y (35) 

which may be written as Q1 Y. 
Although Q1 is ideroporent and of similar form 

to the matrix Q, previously discussed, the situa-



Bull. Geol. Inst. Univ. Uppsala, N. S. 7 (1976) 

tion differs because the dispersion matrix amongst 
the residuals is 

(36) 

which is, in general, nonsingular; its rank is Min 
(v,n-k-1). Thus problems arising from the 
singularity of QWQ do not occur. This was the 
method used by Delany & Healy (1964), in their 
study of the Long Tailed Field Mouse, with one 
concomitant variable, a measure of tooth-wear, 
thought to be a good indicator of age. 

A point of computational interest is that (36) 
ma y be written (W-U'V-1 U) whose inverse 
occurs as the lower right-hand corner matrix in 
the inversion of (34) . This inverse matrix is 
required when computing D2 values or when 
using the method given in Section 5. 

7.4. Externat estimation by canonical earrelation 

Suppose there is one concomitant variable x and 
two y-variates (y1 and y2 ). If it were noticed that 
x= y1 + y2 for all samples it would be normal 
to work in the direction orthogonal to y1 +Y2· 
Thus, we are lead to ask which linear combina­
tion of the y's best prediets x. When there are 
several concomitant variables, we look for the set 
of linear combinations of the y's which best 
prediets the space spanned by the x's or, what is 
the same thing, prediets a set of linear combina­
tions of the x's which span the x-space. The theory 
of canonical earrelations was designed to answer 
questions of this sort. Suppose that k <v, as is 
likely to be the case, and that the coefficient of 
the appropriate linear combinations of the x's 
and y's are given in matrices L(k X k) and 
M( v X v), respectively. Using the notation of (34) , 
the equations to be solved are then 

UM =VLR' 
U'L =WMR (38) 

where R is a v X k matrix whose first k diagonal 
elements are known as the canonical earrelations 
and all others elements are zero; L and M satisfy: 

U'V-l UM = WM(RR') 
UW-lU'L = VL(R'R) (39) 

Only k canonical earrelations will be non-zero 
and our estimate KR of the matrix K is the first 
k columns of the v X v matrix M. 

The matrix CR corresponding to C does not 
seem to have a simple form although MM' may 
be substituted for W-1 in equation (2); the 
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equivalence of these two forms can be derived 
from equation (39) . 

7.5. Comparison of the two methods of 
externat estimation 

When a unit canonical earrelation exists, the 
corresponding canonical loadings m derived from 
equation (38) satisfy 

(U'V-lU-W)m =O. (40) 

Thus, in this case, the dispersion matrix obtained 
from the residuals after correcting for the regres­
sion of the y's on the x's by the first externa! esti­
rnatian method, will not be of full rank and g­
inverses have to be used. Further, if k =  l in (34) , 
then V and L are scalars and UW-l U' = V so 
that the first row of the matrix (34) is equal to 
the linear combination of the v remaining rows, 
obtained by pre-multiplying by UW-l and this 
leads us to suspect that W-l is then a g-inverse 
of W-U'V-1 U. This is easily verified for 

(W-U'V-lU)W-l(W- U'V-lU) 
= W-2U'V-1U+ U'V-l(UW-lU')V-lU 
=W-U'V-1U 

because 

UW-1U' =V. 
W e also note that the corrected values of the 

matrix G of population means satisfy Gm = O, 
because if G =  Y- XV-l U, the regression cor­

rection, and X = YW-l U', im pli ed by the u nit 

correlation, then G = Y (l-W-l U'V-l U). Now 

from (37), m =W-1U'L, so that 

Gm= Y(m-W-lU'V-l(UW-lU')L) 
=Y(m-m) =O. 

Thus since the same linear restncuons apply to 
the rows of G as to the rows of (W-Y'V-l U), 
then the values of D2 are, by Section 3, obtained 
uniquely from GW-1G', because W-1 is a g­
inverse of W-U'V-1 U. This shows that the a ge 
effects need to be eliminared from G but not from 
W-l. The corresponding result when canonical 
earrelation estimation is used, is given by GCRG' 
where eR is equation (2) with K =  m, but in this 
case the two methods must be equivalent. 

When k = l, and the first .canonical earrelation 
is not unity, we still have that m is proportionare 
to W-1 U'. These are the estimates of the regres-
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sion eoeffieients obtained when the single x-variate 
is expressed as a multiple linear regression on the 
y-variates. In this sense, the linear eombination 
amongst the y's is the best linear predieror of the 
x-variate. When there are several x-variates, the 
eanonieal variates whieh are linear eombinations of 
the y's will still be the best linear predietors of 
the spaee spanned by the x's. Therefore, the eanoni­
eal earrelation method is equivalent to the re­
gression method if there is just one eoneomitant 
variate. With two or more eoneomitant variates, 
the eanonieal earrelation method is preferable to 
adjusting eaeh y-variate by multiple regression 
beeause this ignores their intereorrelations. 
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