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A fractal analog has been constructed in order to mode! the distribution of earthquakes in 
a region. The analog consists of a third order paraHel and series network of elements with 
a fractal distribution of sizes. Each element is given a random strength based on a Weibull 
distribution. Strain is applied to the network until an element fails; this is the analog of an 
earthquake. When a failure occurs the stress on the failed network is redistributed on adjac­
ent elements and the failed element is replaced with a new random strength. The redistri­
bution of stress may lead to induced failures with no additional strain required. The failure 
of a seeond or third order element prior to the failure of a primary element is the analog 
of a foreshock; foreshocks occur prior to 19 % of the primary element failures. The failure 
of a seeond or third order element after the failure of a primary element is the analog of 
an aftershock; aftershocks occur after almost all the failures of primary elements. The distri­
bution of failures of elements of various sizes is associated with a distribution of earth­
quakes of various magnitudes; the equivalent b-value is 1.05. 
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In troductian 

The simplest mode! for seismicity is to assume a uni­
form displacement on a single fault. Earthquakes 
with a specified displacement occur at regular inter­
vals. In some cases this approach can be successful 
in predieting the occurrence of earthquakes on ma­
jor faults. This is essentially the basis for the time­
predietable recurrence mode! for large earthquakes 
(Shimazaki and Nakata, 1980; Thatcher, 1984) and 
the characteristic earthquake mode! (Schwartz and 
Coppersmith, 1984; Aki, 1984). There is strong ob­
servational evidence that the earthquakes on the 
San Andreas Fault near Parkfield repeat in a reg­
ular way (Bakun and McEvilly, 1984). 

Howeve r, random aspects of seismicity have also 
received considerable attention. The asperity mode! 
(Lay and Kanamori, 1980, 1981; Ruff and Kana­
mori, 1980, 1983a, b; Kanamori, 1981; Lay et al., 
1982) and the barrier mode! (Das and Aki, 1977; 
Aki, 1979, 1984) introduce the concept of a failure 
strength distribution on a fault. Andrews (1980, 
1981) applied a random stress function over a brittle 
fault surface to build a stochastic mode! and a distri­
bution function of the difference between tectonic 
stress and frictional stress was used by von Seggern 
(1980) in a similar approach. A stochastic mode! 
proposed by Kagan and Knopoff (1981) simulates 
seismicity as a branching process. They have gener-

ated a synthetic earthquake catalog with statistical 
properties similar to actual catalogs. Allegre et al. 
(1982) and Newman and Knopoff (1982, 1983) have 
used a renormalization approach to crack fusion to 
mode! an earthquake. Smalley et al. (1985) modeled 
a fault as an array of asperities with a prescribed 
statistical distribution of failure strengths and inves­
tigated the transition from stable to catastrophic fai­
lure by a renormalization group method. 

The scale invarience of geological phenomena is 
one of the first concepts taught to a student of ge­
ology. lt is pointed out that an object with a scale, 
i.e. a coin, a rock hammer, a person, must be in­
cluded whenever a photograph of a geological 
feature is taken. Without the scale it is often im­
possible to determine whether the photograph 
covers 10 cm or 10 km. The concept of fractals was 
introduced by Mandelbrot (1967) to provide a quan­
titalive measure of scale invarient phenomena. Not­
ing that the length of a rocky coastline increased as 
the length of the measuring rod decreased according 
to a power la w, Mandelbrot associated the power 
with a fractal dimension. 

The basic definition of a fractal distribution is 

N= � (1) 
ro. 

where N is the number of objects with a character­
istic linear dimension greater than r, C is a eonstant 



32 J. Huang and D. L. Turcotte 

of proportionality, and D is the fractal dimension. 
As a mathematicl representation (l) could be valid 
over an infinite range; however, for any application 
there will be upper and lower limits of applicability. 
The essential feature of the fractal distribution is 
scale invariance, no characteristic length enters a 
power law distribution. The fractal distribution is 
applicable to a variety of geological phenomena in­
cluding the size distribution of islands, fragmen­
tation (where it is known as Rosen's law), and to 
seism i city. 

Under many circumstances the number of earth­
quakes N with a surface- wave, magnitude greater 
than m satisfies the empirical relation (Gutenberg 
and Richter, 1954) 

log N= -bm +a (2) 

where a and b are constants. The b-value is widely 
used as a measure of regional seismicity. Aki (1981) 
showed that (2) is equivalent to the definition of a 
fractal distribution. 

The moment M of an earthquake is defined by 

M= f..lÖA (3) 

where Il is the shear modulus, A the area of the 
fault break, and ö is the mean displacement on the 
fault break. The moment of an earthquake can be 
related to its magnitude by (Kasahara, 1981, p. 133) 

log M= cm+ d (4) 

where c and d are constants. Kanamori and 
Anderson (1975) have established a theoretical base 
for taking c = 3/2. These authors have also shown 
that it is a good approximation to take 

(5) 

where r = A '12 is the linear dimension of the fault 
break. Combining (2), (4), and (5) gives 

where 

log N = -2b log r + � (6) 

� = 3/2 bd + a - 3/2 b log a (7) 

and (6) can be rewritten as 

(8) 

A comparison with the definition of a fractal distri­
bution (l) gives 

D= 2b (9) 
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Thus the fractal dimension of seismic activity is 
simply twice the b value, since tht b-value is usually 
in the range 0.8 < b < 1.2 the range of fractal di­
mensions is 1.6 < D < 2.4 (Hanks, 1979). 

A fractal distribution of seismicity in a region can 
be interpreted in one of two ways, or any combi­
nation. The first is a fractal distribution of earth­
quake breaks on a single fault. The seeond is a frac­
tal distribution of fault sizes with repetitive earth­
quakes on each fault. The seeond mode! has been 
proposed by Wesnousky et al. (1983) and provides 
the basis for the mode l considered in this paper. 
Fractal distributions of faults and their relationship 
to the fractal distribution of seismology have also 
been considered by King (1983) and Turcotte 
(1986). 

In this paper, we mode! the seismic activity on a 
fault system by a fractal-based mechanical analog. 
We synthesize earthquakes on two time scales. The 
first is the tectonic time scale which is characterized 
by the recurrence time of major events on a fault 
system ( decades to centuries or lon ger) and the se­
cond is the duration of a complete earthquake se­
quence (days to months). We obtain synthetic 
earthquake catalogs which include complete earth­
quake sequences with foreshocks, mainshock, and 
aftershocks as weil as the recurrence of such se­
quences. The statistics obtained from these syn­
thetic catalogs are compared with observations. 

Our mode! has similarities and differences with 
previous laboratory and numerical models (Bur­
ridge and Knopoff, 1967; Dieterich, 1972; Cao and 
Aki, 1984). We mode! the transfer of stresses be­
tween faults in a manner similar to spring- mass sys­
tems but utilize a statistical distribution of asperity 
strengths rather than a friction mode!. We consider 
a mode! that includes both the spatial and the tem­
poral dependencce of seismicity. 

The simulation approach proposed in this paper 
differs from previous studies in the following ways: 
(l) We mode! a seismically active region as a group 
of sub- paraHel fault planes with a self- similar size 
distribution instead of considering the stochastic 
properties associated with a single fault plane. (2) 
We build a mode! that is based on physical con­
cepts, i.e. our mode! is not purely stochastic. (3) 
The concepts of remote Ioading and stress transfer 
are applied to distinguish seismic time scales. (4) 
Since we are not going to mode! the rupture process 
of each single earthquake in detail, the random fai­
lure strengths are assigned to each fault as a eon­
stant over the fault surface. 
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Analog seismic mode! 

Our geometrically self- similar mode! is illustrated in 
Figure l. We utilize a series of linear elastic el­
ements (vertical bars) to represent a fault system. 
First, second, and third order elements are included 
in our mode!. The two first order elements are con­
nected in series. The eight seeond order elements 
have one- quarter the cross sectional area of the first 
order elements and one-half the length. The thirty­
two third order elements have one- quarter the cross 
sectional area of the seeond order elements and 
one-half the length. Using the definition of a dis­
crete fractal set 

(lO) 

where Ni is the number of elements of size ri we find 
D = 2 for our mechanical analog. 

The basic pattern of the mode! is two multi­
element cells connected in series. Each of the cells 
includes five elements of two different orders with 
one higher order element in the center and two 
series-connected lower order elements on each side. 
Since the structure of the mode l is self-similar, we 
can add an additional order by replacing each of the 
Iower order elements with another 5 element cell. 
Repeating this substitution, the order of this mode! 
can grow to infinity. 

The entire system is placed under a tensional Ioad 
as indicated by the arrows in Figure l. This ten­
sional stress represents the tectonic stress field that 
operates on a region that includes a fractal distri­
bution of faults. The cross sectional area of each el­
ement is associated with the area of a fault. 

Each element of the system is assigned a failure 
strength Of· We assume that the statistical distri­
bution of failure strengths is given by a seeond order 
Weibull distribution 

Pr { :�J = l - ex p [ { :�, } 2 J ( 11) 

where o0 is a reference failure stress. The failure 
strength of each element is determined using (11) 
and a pseudo- random number generator. 

The tensional Ioad on the system is increased un­
til the stress on an element reaches its failure stress. 
The failure of this element is taken to be the equiva­
Ient of an earthquake. The magnitude of the equiva­
lent earthquake depends upon the order (si z e) of 
the element that fails and the stress on the element 
at failure. After failure the stress (load) on the 
failed element is redistributed among the unfailed 
elements. This is equivalent to what happens after 
an earthquake. Some fraction of the regional stress 
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l - l 

1-2 

Figure l. Illustration of the fractal-based, mechanical 
analog mode!. 

will be transferred to adjacent faults. At the same 
time the failed element and the adjacent series el­
ement (which also now has zero load) are both re­
placed with new elements with random failure 
strengths and zero stress. Again this is equivalent to 
what happens on an actual fault. After an earth­
quake on a fault the distribution of asperities is al­
most certainly different and the strength of the fault 
may be increased or decreased. 

After stress redistribution and element replace­
ment, one or more other elements may have 
stresses above their failure stresses and thus will 
fait. If this occurs the stress redistribution and el­
ement replacement process is repeated. If no el-
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ement fails after stress redistribution the tensional 
load is again increased until an element fails. The 
process can be continued indefinite! y. 

A set of failures without additional load is associ­
ated with foreshocks and aftershocks. Multiple 
sh ock s can also occur. Stress redistribution is an es­
sen tia! part of our mode! and is clearly responsible 
for the occurrence of the foreshocks and af­
tershocks. It shoJid be noted that a failure in the 
upper half of our mode! will result in an increased 
strain in that half and a reduction in the lower half. 
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The stress will increase on all unfailed elements in 
the upper half (except the adjacent series element) 
and will be reduced on all elements in the lower 
hal f. 

Synthetic earthquake catalog 

Carrying out the process de�cribed above a number 
of synthetic earthquake catalogs have been con­
structed. For computational convenience the length 

n m 

3 3 2 3 3 3 3 2 3 3 
l l l l l 2 2 2 2 2 
12 3412 34 

3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 l 3 3 2 3 3 3 3 2 3 3 
3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 2 7 7 7 7 7 8 8 8 8 8 

12 3412 3412 3412 34 12 3412 34 

30 
31 l 
31 2 
31 3 
31 4 
31 5 
32 l 

• 

• 
• • • 

• 

• 
• 

• • • 

e First order event e Second order event • Third order event 

Figure 2. Illustration of a typical earthquake sequence. (a) above: Tabulation of element failures. (b) 
below: Tabulation of stress and failure stress for each element. 

STRESS 

3-1-1 3·1-2 2-1 3-1-3 3-1-4 1-1 3-3-1 3-3-2 2-3 

30 0.4241 0.4241 0.4956 0.3391 0.3391 0.5458 0.0199 0.0199 0.4616 
31 l 0.0009 0.0009 0.5374 0.3809 0.3809 0.5510 0.0251 0.0251 0.4668 
31 2 0.2213 0.2213 0.7579 0.6013 0.6013 0.0000 0.2456 0.2456 0.6872 
31 3 0.2613 0.2613 0.7979 0.6413 0.6413 0.0400 0.6192 0.6192 0.0000 
31 4 0.2798 0.2798 0.8164 0.6598 0.6598 0.0586 0.0000 0.0000 0.1729 
31 5 0.7237 0.7237 0.0000 1.1037 l. 1037 0.1061 0.0476 0.0476 0.2205 
32 l 0.0482 0.0482 0.2435 0.0482 0.0482 0.1752 0.1167 0.1167 0.2896 

FAILURE STRENGTH 

3-1-1 3-1-2 2-1 3-1-3 3-1-4 1-1 3-3-1 3-3-2 2-3 

30 l 0.4240 1.4481 0.7846 0.7509 0.6896 0.5510 0.5694 0.3732 0.5085 
31 l 0.3264 0.8797 0.7846 0.7509 0.6896 0.5510 0.5694 0.3732 0.5085 
31 2 0.3264 0.8797 0.7846 0.7509 0.6896 0.9936 0.5694 0.3732 0.5085 
31 3 0.3264 0.8797 0.7846 0.7509 0.6896 0.9936 0.5694 0.3732 0.5085 
31 4 0.3264 0.8797 0.7846 0.7509 0.6896 0.9936 1.4597 0.4887 0.7023 
31 5 0.3264 0.8797 0.2435 0.7509 0.6896 0.9936 1.4597 0.4887 0.7023 
32 1.44 75 0.5737 0.2435 0.9730 0.9364 0.9936 1.4597 0.4887 0.7023 

3-3-3 

0.3994 
0.4047 
0.6251 
0.9987 
0.0000 
0.0476 
0.1167 

3-3-3 

1.4786 
1.4786 
1.4786 
1.4786 
0.4124 
0.4124 
0.4124 

3-3-4 

0.3994 
0.4047 
0.6251 
0.9987 
0.0000 
0.0476 
0.1167 

3-3-4 

0.9455 
0.9455 
0.9455 
0.9455 
1.5208 
1.5208 
1.5208 
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of each catalog is limited to a sequence of about 250 
earthquake sequences. 

A typical synthetic earthquake sequence is shown 
in Figure 2. The number n is the number of times 
that additional load has been applied; this is equiva­
lent to the number of tectonic time steps. The num­
ber m is the number of times that stress has been 
redistributed. Each element is numbered according 
to the system introduced in Figure l. The occur­
rence of failures is illustrated in Figure 2a, the stress 
on each element o/o0 is given in Figure 2b together 
with the failure stress on each element or/o0. 

The increase in stress between steps 30 and 31 in­
duces a mainshock on a first order element ( 1- 1). 
lt is seen that the stress on this element equals 
0.5510 the failure stress. This mainshock is followed 
by a cluster of eight aftershocks associated with four 
redistributions of stress. After the first redistri­
bution of stress the stress on a seeond order element 
(2-3) 0.6872 exceeds the failure stress on this el­
ement 0.5085. After the seeond redistribution of 
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stress the stresses on three third elements (3-3- 1, 
3-3-2, 3-3-4) exceed their failure stresses and three 
aftershocks occur. A third redistribution of stress 
results in the failure of a seeond order element 
(2- 1). A fourth redistribution of stress results in the 
failure of three third order elements (3- 1- 1, 3- 1-3, 
3- 1-4). A fifth redistribution of stress does not result 
in the failure of l}ny elements so that the applied 
stress is increased until the seeond order element 

2- 1 fails. 
Synthetic earthquake sequences with other featu­

res also appeared in the catalogs; two of these are 
given in Figure 3. The sequence is initiated with a 
seeond order foreshock on element 2-4 and this is 
followed by a third order foreshock on element 
3- 1-3. The mainshock then occurs on element 1- 1. 
This is followed by two seeond order aftershocks 
(2- 1, 2-4) and seven third order aftershocks 
(3- 1-2(2), 3- 1-3, 3- 1-4, 3-4- 1, 3-4-3, 3-4-4). 

A sequence with a double main event is also illus­
trated in Figure 3. The sequence is initiated with a 

3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 l 3 3 2 3 3 3 3 2 3 3 

n m 

29 

30 l 
30 2 

30 3 
30 4 
30 5 
30 6 

31 l 

n m 

151 l 

15 1 2 
152 

152 2 
152 3 
152 4 
152 5 

152 6 
15 3 

l l l 1 122222 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 2 7 7 7 7 7 8 8 8 8 8 
l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 

• 
• 

• 
• 

•• 
• • • •  

• • • 
• 

3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 l 3 3 2 3 3 3 3 2 3 3 
l l 11 1 2222 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 2 7 7 7 7 7 8 8 8 8 8 
l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 l 2 3 4 

• 
• 

• 
• • 

• ••• 
• 

• • 
• 

• 

e First order e vent e Second order event • Third order event 
Figure 3. Tabulatian of element failures for two typical earth sequences illustrating foreshocks (#30) 
and a double shock (#152). 
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main event on element 1- 1. This is followed by two 
seeond order aftershocks (2-4, 2- 1) and seven third 
order aftershocks (3- 1- 1, 3- 1-2, 3-4-2, 3-4-2, 3-4-3, 

3- 1-3, 3- 1-4). And the sequence terminates with a 
seeond main event on element 1- 1. 

In the synthetic catalogs that we have generated, 
19 % of the main events had foreshocks. This is in 
excellent agreement with the study of actual earth­
quakes by von Seggern et al. (1981) who found 21 % of the earthquakes studied had foreshocks. 
Jones and Molnar (1976) studied only !arge shallow 
earthquakes that could be recorded teleseismically 
and found that 44 % had foreshocks. The occur­
rence of fareshacks before a fraction of the main 
events is a natural consequence of our stochastic 
mode!. In some cases the transfer of stress from a 
secondary element (fault) can trigger the failure of 
the primary element (fault) . lt is difficult to envision 
a non-stochastic mode! exhibiting this behavior. 

Frequency-magnitude statistics 

The synthetic earthquake catalogs that we have gen­
erated can also be used to determine frequency­
magnitude statistics. For each failure of an element 
we take the failure stress Of to be the stress drop 
associated with the equivalent earthquake, this is 
always given by (11) in terms of the reference stress 
o0. The area A and length l of the failed element 
are referenced to the area A0 and length 10 of a pri­
mary element. The moment M of the syntthetic 
earthquake is given by (3) and the mean displace­
ment is approximated by 

Ö= �! 

� 
(12) 

we assume that the magnitude is related to the mo­
ment by (4) with c= 1.5 and d= 16. From (3), (4), 
and (12) we have 

m= _l log [Ao lo o0 { �0 } {-1 } {�}J-10.7(13) 1.5 Oo lo Ao 

In order to generate synthetic magnitudes we take 
A0 10 o0 = 1025 with the result that the synthetic 
earthquakes fall in a range of magnitudes between 
m = 5 to m = 7.5. 

The cumulative frequency-magnitude distribution 
is given in Figure 4. A !east square linear fit gives a 
b-value of 1.05. This is close to the values for actual 
earthquake catalogs that typically have b-values be­
tween 0.80 and 1.20. From (9) the corresponding 

.,., 
(\) 

o 
N 

o 

.,., 
ci 

o 
ci 

5.0 
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log( N) = 8.5 - M 
b-value "' 1.0 

5.5 6.0 6.5 
Magnitud e 

7.0 7.5 

Figure 4. Frequency-magnitude statistics. 

B.O 

fractal dimension is D = 2.10. The fractal dimen­
sion for the earthquake distribution is very nearly 
equal to the fractal dimension D = 2 for the num­
ber-size relation for the elements (faults) in our 
mode!. The fractal behavior in Figure 4 is over a 
limited range of magnitude. This is not surprising 
since on! y three sizes of faults are considered in our 
mode!. If we extended our mode! to more orders 
we would expect that the range of applicability of 
the fractal distribution would increase. 

Conclusions 

In modelling earthquakes an essential question is 
whether the problem is deterministic or stochastic. 
In the sense that Schrodinger's equation is appli­
cable, all problems are stochastic. However, con­
tinuum equations are now known to yield chaotic 
solutions. Lorenz (1963) derived a set of total differ­
ential equations that approximated the full 
equations for thermal convection. Numerical so­
lutions of these equations exhibited chaotic beha­
vior. That is, infinitesmal changes in initial con­
ditians led to order-one variations in the evolving 
solutions. Many other solutions of this type have 
subsequently been found and their general behavior 
is classified as strange attractors; these solutions 
exhibit fractal behavior. lt is now generally accepted 
that turbulence is chaotic, stochastic, and not de­
terministic. Although it is not possible at this time 
to fully specity the continuum equations governing 
the behavior of a seismogenic zone, it is very Iikely 
that they will generate chaotic solutions. 

Stochastic problems that are scale invariant often 
yield fractal distributions. Fractal statistics are appli-
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cable to a variety of problems in turbulence. The 
fact that the frequency- magnitude relation for re­
gional seismicity is a fractal is evidence that seismi­
city is stochastic. We have proposed a fractal- based 
model for seismicity. Earthquakes are modelied as 
the failure of mechanical elements. The elements 
have a fractal relationship between number and 
size. The elements are given random strengths. This 
is an analog to asperities with random strengths. 
Transfer of stress between elements is an essential 
feature of o ur model. Sets of earthquakes with 
foreshocks and attersbocks are modelied success­
fully. The frequency- magnitude statistics earres­
pond to a b-value near unity which is in agreement 
with observations. 

Alternative models can certainly be constructed. 
Howeve r, we feel t hat a fractal- based model is es­
sential. The number- size relation of our elements is 
realistic and gives failure statistics that agree with 
earthquake distributions. Alternatives to the seeond 
- order Weibull distribution of strengths can be con­
sidered. Also the model can be extended to more 
orders of elements. We are quite encouraged that 
our relatively simple model can generate quite 
reasonable earthquake catalogs. 
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