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In the geological sciences thermodynamics is chiefly used in the treatment of mineral
assemblages. However, the laws of thermodynamics are not limited to chemical phase prob-
lems but are equally well applicable to mechanical phenomena such as the deformation of
rocks due to deviatoric stress and/or the body force of gravity.

The failure of many attempts to explain preferred mineral orientation in strained rocks
in terms of classical equilibrium thermodynamics illustrates the need to apply "Non-equi-
librium thermodynamics” or the ”Thermodynamics of Processes” in which “"Extreme Rate
of Entropy Production” or "Extreme Rate of Energy Dissipation” are governing principles.

Combined with the laws of classical mechanics, thermodynamical concepts control the
evolution of deformation structures ranging in scale from crenulation cleavage, through
folds and boudinage, to diapirs and orogenic nappes. Buckle folding and calculations of the
velocity of the advance of thrust sheets are presented as examples.
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Introduction

In view of the successful application of thermo-
dynamics to mineral assemblages in metamorphic
rocks in the last 30 years or so, it is encouraging to
find that deformation structures in plastico-viscous
rocks may also successfully be treated by thermo-
dynamic methods. Admittedly, the few published
treatments of even rather simple deformation struc-
tures such as preferred mineral orientation in
strained rocks have not been especially successful,
e.g. MacDonald (1957), Kamb (1959, 1961), Ver-
hoogen (1951).

However, I believe the reason for this lack of suc-
cess is the use of equilibrium thermodynamics ra-
ther than open system thermodynamics or non equi-
librium thermodynamics which is required for the
study of solids yielding under stress. Crystals ex-
posed to deviatoric stress do not represent equi-
librium. As long as the deviatoric stress acts, the
situation is intrinsically unstable and, for rocks
exhibiting no defined yield point, an equilibrium
state will not be reached as long as the stress re-
mains deviatoric. Diffusion and various kinds of
chemical processes make regional metamorphic
rocks yield and flow at stresses much below the
short-term yield strength as measured by the rock
mechanicists in the laboratory.

Accordingly, classical equilibrium  thermo-
dynamics cannot be expected to yield useful infor-

mation or profound understanding when it comes to
structures developed under deviatoric stress. The
theories of “non equilibrium thermodynamics”,
“open system thermodynamics” or the “thermo-
dynamics of processes” must be applied.

These three terms are synonyms for the kind of
thermodynamics which is applicable to systems not
in equilibrium, see e.g. Onsager (1931), Prigogine
(1947, 1967), Prigogine & Stegers (1984) and Gyar-
mati (1970).

The chief rule for the control of the evolution of
systems not in equilibrium — for example mechani-
cally stressed systems — is that the path of evolution
is determined by prevalence of those processes
which dissipate energy with extremum rate. De-
pending upon whether the velocities of the various
processes or the forces are varied during the operat-
ion of seeking the extremum, the latter is either a
maximum or a minimum.

For viscous processes, production of entropy is
equal to dissipation of energy divided by the instan-
taneous temperature. Hence the criterium for the
prevalent process: “extremum rate of dissipation of
energy” is equivalent to “extremum rate of pro-
duction of entropy”. Onsager (1931) uses “extre-
mum (minimum) dissipation of energy” as the con-
trolling principle, while Prigogine (1947) applies
“extremum (minimum) production of entropy” as
the controlling factor. What is stated above means
that the structures which develop in non equilibrium
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systems are controlled by the details of the pro-
cesses which take place.

This condition clashes with a basic premise of
equilibrium thermodynamics, viz. the premise that
the equilibrium situation as manifested by the min-
erals that develop, their exact chemical composition
etc. — is completely independent of the ways and
means by which equilibrium is reached.

As examples on how structures in deformed rocks
are controlled by the criteria of non equilibirum
thermodynamics, of open system thermodynamics
or of the equivalent thermodynamics of processes,
we shall consider
(1) buckling of an embedded sheet of rock, and
(2) the gravitational spreading of a composite oro-
genic nappe.

Both systems have been treated in earlier publi-
cations (Buckling: Biot, 1961; Fletcher, 1977;
Smith, 1975; Smoluchowski 1909; Ramberg 1962,
1981; Spreading: Price, 1973; Elliott, 1976; Ram-
berg, 1986) but not from the view point of non
equilibrium thermodynamics.

Buckle folding of embedded layer

The model consists of a layer with high effective vis-
cosity embedded between two half spaces of low vis-
cosity (In practice the half spaces are layers with
thicknesses exceeding the wavelength of the folds
that form.)

Compression parallel to layering produces folds
along the embedded layer. The problem is to find
the preferred — or dominant — wavelength which
tends to develop from a spectrum of statistical fluc-
tuations of initial sinusoidal deflections with very
small amplitudes. The mechanism which controls
the initial wavelength of those deflections that sur-
vive and grow during evolution of the system is acti-
vated at the very beginning of the buckling process.
When seeking the preferred wavelength it is there-
fore sufficient to consider infinitisimal motion and
strain.

The problem is well suited to demonstrate that
either maximum or minimum rate of energy dissi-
pation or rate of entropy production can be used to
find the “preferred path of evolution” of the system.

In systems of this kind the “preferred path of
evolution” is manifested by a preferred — or domi-
nant — wavelength of the folds which develop. To
find the initial wavelength of the buckle folds which
prevail during evolution of the system, the rate of
growth of amplitude in most studies is calculated as
a function of the wavelength of the corresponding
fold and of the compressive force.
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The preferred wavelength is found to coincide
with the maximum rate of relative growth of ampli-
tude if the compressive force is kept equal for the
spectrum of wavelengths which may develop.

When the compressive force is kept equal and
constant, and the amplitude/wavelength ratio is
small, then maximum rate of amplitudinal growth
means maximum rate of energy input due to the
buckling force. This is so because maximum rate of
relative growth of amplitude coincides with maxi-
mum rate of relative shortening of wavelength due
to buckling. This will be demonstrated below.

If, on the other hand, the energy of evolution of
the folds is based on equal rate of relative growth
of amplitude while the compressive force is varied
then the preferred wavelength coincides with mini-
mum buckling force and with minimum rate of
energy input.

To focus the discussion let us consider briefly the
dynamic analysis of the model.

It was mentioned above that different methods
have been used in the analysis of viscous buckling.
A ”thick-plate-bending method” similar to one of-
ten used in applied mechanics, is not the most exact
one but it is simple and quite illuminating, demon-
strating very well the essential points of the buckling
phenomenon. For more exact analyses see Biot
(1961), Fletcher (1977), Smith (1975), Ramberg
(1970).

Restricted to small amplitude/wavelength ratios
and Newtonian materials the compressive layer-
parallel force needed to buckle the layer itself is cal-
culated for different rates of compression and com-
bined with the force needed to press the bends into
the adjacent materials and there produce the so-
called contact strain on either side of the layer.

In this way relationships are obtained between
the rate of growth of amplitude or the rate of shor-
tening of wavelength and the compressive stress
parallel to the general trend of the buckling layer.
See eqns (1 and 6). The general trend of the layer
is the line joining the inflection points of the row of
buckles. Eqns. (1) is an acceptable approximation
at ¢ < 1.

(1) oym=(4/(Rmd)—d/(3Rm)+(2/Rm+2/3) (¢/
2+¢%(6Rm) ) / (1+d/Rm +d*/3) Yvly

Rm=mn/m,, &=2nH/k, X\ is wavelength and n;/m; is
the viscosity ratio. In this equation (a rearrange-
ment of eqn (63) in Ramberg, 1962) the amplitudi-
nal velocity divided by the instantaneous amplitude
— vly — is termed the “relative amplitudinal growth
rate” and o/, — the buckling stress divided by the
viscosity of the layer — is referred to as the “nor-
malized buckling stress”. The quantity in the paren-
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thesis in front of ”v/y” corresponds in magnitude to
the normalized buckling stress needed to generate a
relative amplitudinal growth rate of unit magnitude.
It is practical to assign a special name to this quan-
tity: ”Specific normalized buckling stress”. This in-
dicates the character of the quantity which measures
the normalized stress specifically needed to make
the amplitude grow at a rate of unit relative velo-
city. The thus defined ”Specific normalized buckling
stress” will be referred to by the letters Snobs, and
eqn (1) can be identified by a much shortened ex-
pression:

(2) opMi = Snobs viy

We see that Snobs contains only two variables, the
viscosity ratio Rm=n;/n,, and the ratio H/A which
occurs in ¢=2mH/\.

Both variables are dimensionless and so is Snobs
itself. When Snobs is plotted as a function of the
wavelength/thickness ratio at selected values of
Ni/M; we find that Snobs goes through a minimum
at a MH ratio which depends upon the magnitude
of ny/m,. This is presented in Fig 1.

If the rate of relative amplitudinal growth is kept
constant for the spectrum of wavelengths which may
occur, then eqn (2) shows that the normalized buck-
ling stress goes through a numerical minimum at the
same wavelength/thickness ratio as does Snobs.

For a given buckling layer with uniform thickness,
the buckling force (=stress multiplied by the thick-
ness of the layer times its length parallel to the fold
axis) assumes minimum value at the same A/H ratio
as does the stress. This is the wavelength/thickness
ratio for which the buckling process meets least vis-
cous resistance and accordingly by Gauss’ Principle
of Least Constraint, is the initial wavelength of
those viable buckies which will survive and grow;
i.e. the buckles with the dominant wavelength.

With the non equilibrium thermodynamics of
Onsager and Prigogine in mind it is interesting to
see if the rate of dissipation of energy (cf. Onsager,
1931) and/or the rate of production of entropy (cf.
Prigogine, 1947) also assume minimal values at the
same wavelength which minimizes the buckling
force and the viscous resistance.

The rate of input of energy per wavelength is the
buckling force multiplied by the rate of buckle-
shortening per wavelength.

(Buckle-shortening defines the shortening which
is due solely to the periodic sidewise deflection of
the layer. Shortening by homogeneous pure shear is
not considered in the energy calculation). To evalu-
ate the energy input it is necessary to find how the
rate of relative shortening of wavelength is related
to the rate of relative amplitudinal growth.

Thermodynamics applied to deformation structures 3

Snobs
1.0

0.8F

Rm=100

1 AH
20

Fig. 1. Snobs=specific normalized buckling stress plotted
as a function of wavelength/thickness ratio. Minimum on
Snobs curve defines the preferred wavelength/thickness
ratio. Rm=m,/m,.
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For sinusoidal buckles with small ampliude/wave-
length ratio the rate of shortening is related to the
rate of growth of amplitude by the approximation

(3) A= =27 %yvik

This equation is readily modified to give the relation
between the rate of relative shortening of wave-
length and rate of relative amplitudinal growth:

(4) M= =222 (yiA)vly

(5) viy=—1/Qm(y/A)?) MA
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If v/ly in equation (1) is replaced by above ex-
pression then an equation is obtained relating the
normalized buckling stress to the rate of relative
shortening of wavelength, A\, eqn (6).

(6) opMi=( (4/(Rmd)—¢d/(3Rm)+(2/Rm+2¢/3)
(¢p/2+¢*(6Rm) ) /(1+d/Rm+¢?/3) ) / (—2n?
(y/h)?) IMA,

or:
(7) oy = —Snobs/(2® (y/\))A/A

The proportionallity factor between oy/n; and A/A is
Snobs multiplied by the quantity —1/(21® (y/A)?).

It is to be expected that, statistically, the ampli-
tudes of deflections caused by buckling are pro-
portional to the wavelengths of the corresponding
buckles. To the extent that this is true, the quantity

—1/27* (y\?)

is constant for all waves in the spectrum of deflec-
tions. As shown by eqn (7), when the rate of rela-
tive shortening is constant then the buckling stress
— and by implication the buckling force — are
minimized at the same MH ratio which minimizes
Snobs. At constant rate of relative shortening, the
rate of energy input is minimized when the stress is
minimized. We conclude from what has been stated
above that for constant relative velocity — constant
rate of relative amplitudinal growth, or constant
rate of wavelength shortening as the case may be —
then energy input rate, energy dissipation rate and
entropy production rate are all minimized at the
wavelength/thickness ratio of the dominant wave.
Some examples are presented in Fig. 1.

After these comments on the energy of buckling
constrained by constant rate of relative amplitudinal
growth, and constant rate of relative shortening of
wavelength while the normalized buckling stress is
varied, we shall continue to discuss the energetics
of buckling, but now constrained by equal buckling
stress for all wavelengths while the rate of relative
amplitudinal growth and the rate of relative shor-
tening of wavelength are permitted to vary.

For this purpose it is practical to invert eqn (2):

(8) vly = 1/Snobs oy/n; = Ramp op/n,

In this form of the relationship, the normalized
buckling stress is the independent variable and the
relative amplitudinal growth rate is the dependent
variable.

The inverse of Snobs is termed Ramp and defines
the value which the rate of relative amplitudinal
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Fig. 2. Ramp=relative amplification plotted as a function
of wavelength/thickness ratio. Maximum on Ramp curve
defines the preferred wavelength/thickness ratio. Rm=

nMme.

growth assumes when the value of the normalized
buckling stress is equal to unity.

Ramp may be referred to as the “relative amplifi-
cation” because it amplifies the relative amplitudi-
nal growth rate in proportion to the normalized
buckling stress.

Since Snobs as a function of AH goes through a
numerical minimum at a wavelength/thickness ratio
which depends upon the ratio n,/n; it is evident that
Ramp, being the inverse of Snobs, must go through
a maximum at the same wavelength/thickness ratio
at corresponding visosity ratio. This is demonstrated
in Fig. 2.

Provided the normalized buckling stress is kept
constant and equal for the whole spectrum of poten-
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tial wavelengths of the buckles, then v/y and Ramp
are linearly related and it follows that the relative
amplitudinal growth rate goes through maximal
value at the same MH ratio as that which minimized
the buckling stress in the previous model with con-
stant amplitudinal growth rate. On account of the
established linear relation between relative ampli-
tudinal growth rate and rate of relative shortening
of wavelength, it follows that the maximum rate of
input of driving energy coincides with the preferred
wavelength. In other words, if the buckling stress is
kept constant and the rate of relative growth of
amplitude is allowed to vary, then it is maximum
rate of energy dissipation, and maximum rate of
entropy production, which are the criteria that de-
termine the “preferred path of evolution”.

Spreading of an orogenic nappe

The two-dimensional nappe consists of two layers, a

bottom layer (1) with thickness H,, constant vis-

cosity n; and density o;, and an upper layer (2)

whose relevant properties are H;, n, and ;.

The motion in the system is approximated by two

polynomial stream functions:

(9)  Wi=—(ay® +by® +dy,* +ey’ +fy,°) x,
+(cy ? +5/3dy,> +10/3ey,* +14/3fy)°) x,°
—(eyi® +753fy%) x°

valid for layer (1), and:

(10) Wo=(ay +axny; +axy,’ +auy,” +azy, +ax
y2) X23+(441+a423)/2—63125)’2 —de1y2 —55/
3axys” —5/3a62y2”) X2 +(ae1 +as2y2)x2

valid for layer (2).

The equations are selected from the stream func-
tion solutions given in Ramberg (1986). For these
two functions to yield information on velocity,
strain, stress etc. the coefficients must be de-
termined. Determination of the coefficients is partly
done by applying the boundary constraint of con-
tinuous normal and shear stress as well as continu-
ous velocity at the contact between the two layers.
The lack of shear at the free top surface of layer (2)
is also used for coefficient determination. This oper-
ation leads to all coefficients in stream function two,
i.e. ay to ag in eqn (10) and ¢, d, e and f in eqn
(9), being related to a and b in stream function (9).
For details see Ramberg (1986).

It is for the final determination of a and b that the
principles of non equilibrium thermodynamics are
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useful. Non equilibrium thermodynamics requires
that the rate of dissipation of potential energy due
to viscous strain shall assume an extreme value.
(For the case in question the extremum is a maxi-
mum, in accord with the condition that the force is
the same for all possible processes that constitute
the yield, while the velocities are variable, see ear-
lier discussion in the section on buckling).

To apply the requirement of extremum dissi-
pation or extremum entropy production, formulas
for the energies are needed.

The instantaneous rate of change of strain energy
is obtained by integrating the specific strain energy
rate, é, + €,y (= the energy rate per volume):

(11) &, = g2 = 4ni(oulox)® = dni(—o*y/
0x0y)?,

and

(12) &y, = M'Yxy’ = M' (Quldy + oviox)? =
(O*plox? — 0*yloy?)?

and the specific potential energy rate:
(13)  €por = 0 v = 0ig OYlox

over a cross section slice of unit thickness parallel to
the plane x, y through the model. n; and o, are used
for the portion of the slice that cuts layer (1) and 1,
and @, for the portion that cuts through layer (2).
Here u and v are velocity components in horizontal
and vertical directions respectively; Yy, is shear
strain rate, €, is rate of longitudinal strain in direc-
tion x and g is acceleration of gravity. The inte-
gration leads to the two energy equations (14) and
(15)

(14)  Ey = (Ag@®Hy* + Bob?Hy® + Coy abH,)
for the strain energy rate, and
(15)  Epoy = 028 (ApoaH* + BpobHy'),

referring to the potential energy rate.

Both equations are valid for the whole cross sec-
tion slice of unit thickness.

The factors Agy, Bey, Cey, Apor @and By in front
of the coefficients a and b are now known, but much
too lengthy to present in full here: the interested
reader is referred to the author’s original publi-
cation op cit. 1986. It is worth mentioning, though,
that the factors in question are functions of but
three variables, viz. the thicknesses of the two lay-
ers and the length of the cross section.

(In eqns (14) and (15) only the properties of layer
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(2) seem to occur; but that is because thickness,
density and viscosity of layer (1) are "hidden” in the
factors Agy, Bey, Ceys Apot and Bpy).

In equations (14) and (15) all is known except the
two coefficients a and b which in fact control the
remaining coefficients in both stream functions. A
determination of a and b accordingly makes the
stream functions numerically applicable to the
model.

To obtain numerical values for a and b by the
method of maximizing the dissipation rate we make
use of the Lagrange Multiplier. To this end a new
function, F, is formed:

(16) F= Epo + MEpo + Egy)

and the partial derivatives of F with respect to a, b
and ) are put equal to zero. Note that Epy + Ey
=0 is the side condition stating that strain energy
rate at all time is balanced by the rate of decline of
potential energy. A in the above equation is called
the Lagrange Multiplier. For explanation of the La-
grange Multiplier method see Protter and Morrey
(1964).

From the set of three homogeneous equations de-
veloped when the partial derivatives are equated to
zero, it is possible to eliminate A and determine the
coefficients a and b. The thus found values for a and
b are inserted in the functions that relate the re-
maining stream function coefficients to a and b, a,,,
ay. . . ag, ag; and ¢, d, e, f as functions of a and b
are now inserted in stream functions (9) and (10)
from which the instantaneous velocity field follows
by differentiation:

u = —o0y/oy and v = o/ox

These instantaneous velocity fields may then be
multiplied by a reasonable time step to give the ini-
tial displacement field.

Numerical examples are discussed in the section
below.

Models with aspect ratio R,=2

Fig. 3A shows an initial undeformed profile with a
set of vertical passive strain markers, valid for mod-
els B, C and D. H,=5000 m and H,=50 m. H, is
exaggerated by a factor 10 in A. Density of both lay-
ers, 01=Q, = 2.8g/cm3 and viscosity of layer 2, n,,
equals 10?2 poise while the viscosity of the basal
layer varies: n;=10% poise in B, 10'7 poise in C and
10'® poise in D. B, C and D show the deformed
shape after 5-10° years had the initial instantaneous
velocity been constant during this length of time.
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Fig. 3. Gravitational spreading of double layer viscous
structure with basal layer 1, 50 m thick, density 2.8 g/cm®
and viscosity 10?2 poise in B, 10'7 poise in C and 10'® poise
in D; and an upper layer 2, 5000 m thick, density 2.8g/cm?
and viscosity 10?? poise. Aspect ratio R,=L/H,=2. A
shows initial profile with passive markers, H, of basal
layer exaggerated by factor 40. B, C and D show deformed
profiles had initial velocity remained constant during 5 10°
years. As velocity is actually not constant the deformations
visualize variation of initial velocity at the boundary and
at the markers rather than the final shape, see text and
Tables 1 and 2. The velocity of extrusion of layer 1 in D
is so large that the front would be far outside the limit of
the illustration.

The velocity is of course not constant for which
reason the deformed shape is to be regarded as a
geometric visualization of the varying initial velocity
at the boundary rather than a final shape. (One may
wonder what is the source of the viscosity value 10%
poise which we use so frequently in the models? The
source is Haskel (1935); 10%? poise is the classical
value for the average viscosity of the crust and the
upper part of the mantle treated as a unit and cal-
culated by Haskel based on data from the rate of
postglacial uplift in Scandinavia).

It is interesting to consider how the deformation
— or more exact: the initial velocity field — varies
with changing viscosity of the basal layer.

If there is no differencce between the viscosity of
the two layers, then the deformation in the basal
layer is chiefly simple shear caused by drag from the
superincumbent mass whose lateral spreading in-
creases uppward. In model B there is very little ver-
tical squeezing of layer 1 and its viscosity is too high
to permit horizontal extrusion. Along its base, layer
2 encounters great resistance due to the combi-
nation: high viscosity and small thickness of layer 1.
The mean pressure in the central part of layer 2 is
therefore relatively high as in fact indicated by the
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Table 1. U, and V, are horizontal and vertical velocities at the contact between the two layers at the front face; U, and
V, are horizontal and vertical velocities at the top of the front face of layer 2. The last value of U, for each model is the
maximal extrusion velocity of layer 1 at the viscosity in question.

Ufree is the average velocity of the front face and Vfree the average velocity of decline of the top surface of layer 2 if

there were free slip at the base.

All velocities are in cm/year. See Tables 2, 3, 4 and 5. 7, is in poise. Column "1 gives the exponent in the expression

for the viscosity.

H,=5000 m, H,;=50 m, n,=10% poise, 0;=0,=2.8g/cm;

R,=2, Ufree=.532192, Vfree=—.260963

Uh U, U, Vi V,
22 .005246 303135  —.000018 —.129849
21 .051646 .336734 —.000160 —.143911
20 .301692 .438062 —.000696 —.183188
19 .516955 487478 —.000971 —.188127
18  .556004 1492318 —.001177 —.182853
17 571188 471632 —.003998 —.143409

17 1.269168 See Table 2

R,=S5, Ufree=1.330481, Vfree=—.260963

Ui U, U, Vi V,
22 .005853 336135 —.000019 —.129954
21 .058645 393264 —.000177 —.156038
20 .415098 .663204 —.000868 —.234619
19 1.075757 1.139646 —.001236 —.257297
18 1.311789 1.315541 -.001273 —.255344
17 1.342923 1.336334 —.001321 —.246014
16 1.354070 1.323144 —.004846 —.173244
16 3.688546

R,=20, Ufree=5.321925, Vfree=—.266096

M U, U, v, \Z
22 .003570 183400 —.000004 —.026791
21 .039037 236291 —.000043 —.037432
20 .399076 .605228 —.000431 —.115289
19 1.672415 1.767629 —.001161 —.240920
18 4.078730  4.103834 —.001330 —.268224
17 5.200633  5.203771 —.001336 —.268588
16 5.357413  5.357175 —.001325 —.262666
15 5.375086  5.370487 —.002536 —.211332

15 7.521821 See Table 3

R,=100, Ufree=26.609625, Vfree=—.26609625

L U, U, Vi Vv,
22 .000812 .041224 0 —.001250
21 .009167 0.54804 0 —.001817
20 .125064 187395  —.00003 —.008025
19 1.214855 1.276036 —.000289 —.059854
18 5.501544 5.531198 —.001012 —.203781
17 15.633015 15.642454 —.001320 —.265235
16 24.839256 24.840800 —.001342 —.269725
15 26.654741 26.654867 —.001333 —.267422
14 26.854354 26.853979 —.001469 —.244853
13 26.865604 26.864924 —.002065 —.222380
13 30.954932 See Table 4

R,=200, Ufree=53.219255, Vfree=—.2660925

M U, U, Vi V,
22 .000408 .020695 0 —.000314
21 .004609 .027545 0 —.000457
20 .063783 .095530 0 —.002054
19 .704641 739809  —.000086 —.017852
18 4.952857  4.978176 —.000561 —.112965
17 17.174310  17.184053 —.001206 —.242250
16 40.942609 40.945132 —.001338 —.268913
15 52.030121 52.030422 —.001341 —.269424
14 53.574745 53.574728 —.001327 —.263519
13 53.735459  53.735006 —.002520 —.212086

13 74.725421 See Table 5

gentle convex curvature of the top surface of the
model. (Due to the great vertical exaggeration of
layer 1 in drawing B (here about 20 times) it is hard
to recognize the gentle tilt of the passive markers
which indicate the magnitude of the small shear
strain in layer 1. In models with greater shear strain
along the base the tilt of the markes is very pro-
nounced, see Fig. 4).

The relatively low viscosity of layer 1 in model C
permits a considerable amount of vertical squeezing
by the weight of the overburden, and in-spite of its
small thickness, layer 1 is extruded quite rapidly.
Details of the velocity distribution are recorded in
Tables 1 and 2. The horizontal motion during ex-

trusion generates shear stress at the contact to layer
2 which accordingly becomes exposed to horizontal
tensile stress, increasing in intensity from zero at the
front face(s) to maximal value in the center of the
symmetrical body. As the vertical normal stress
component is compressive throughout layer 2 the
result is a deviatoric stress which causes horizontal
tensile strain that gives rise to maximal stretching in
the center and a concave upper surface of the
model. The extrusion of a relatively “soft” basal
stratum and its effect on a more competent overbur-
den is enhanched if the viscosity of the basal stratum
is decreased. This is demonstrated in model D
where the viscosity of layer 1 is no more than 10'°
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Table 2. Horizontal, U, and U,, and vertical, V, and V,,
velocity in cm/year at different levels at the front face of
layer 1 and 2 in models with aspect ratio 2 and different
viscosity of the basal layer. Ni gives height of level in each
layer, expressed in parts of the full heights H, and H,.
Note that U, is maximum close to the middle level in layer
1, and that U, increases toward the base, assuming maxi-
mum value at the contact between the two layers. The lat-
ter condition is evidence of drag from the extruding mass
of the basal layer.

H,=5000m, H,=50m, n,=10%* poise, 0;=0,=2.8g/cm;
R,=2, n,=10'° poise

U, U, v, Vv, Ni
623642 371312 —.081194 —.023246 i
9.338533 .418161 —.078932 —.036160 .9
16.102923  .460207 —.072769 —.046851 .8
20.916812 .497448 —.063678 —.055560 7
23.780200  .529887 —.052635 —.062527 .6
24.693087  .557522 —.040616 —.067993 5
23.655473  .580353 —.028595 -—.072196 4
20.667357  .598381 —.017547 —.075377 3
15.728740 .611605 —.008449 —.077778 2
8.839621  .620025 —.002275 —.079636 1
0.000000 .623642 —0.000000 —.081194 0
n'=10"" poise, R,=2
571188 .471632 —.003998 —.143409 1
.861490  .490161 —.003759 —.132281 9
1.074587 .506786 —.003382 —.120275 .8
1.210480 .521506 —.002904 —.107485 A
1.269168  .534320 —.002365 —.094006 .6
1.250652  .545229 —.001803 —.079934 5
1.154931  .554233  —.001257 —.065363 4
982005 .561331 —.000765 —.050389 3
731875 .566523  —.000366 —.035106 2
404540  .569809 —.000098 —.019611 .1
0.000000 .571188 —0.000000 —.003998 0

poise, in other words, even less than that of rock
salt which under natural conditions appears to
exhibit an effictive viscosity around 10'7 poise. In
model D the maximal rate of extrusion is no less
than 24.69 cm/year as recorded in Table 2.

Models with aspect ratio Ry=5

Models R,=5;A, B, C whose right half profiles are
shown in Fig. 4 start out with initial aspect ratio
R,=5 (stippled outline). H,=5000 m, H;=50 m,
1,=10%? poise and 0,=p,=2.8g/cm>. Viscosity 1, is
10%2in A, 10" in B and 10'° for C, all in poise.
The thin basal layer is not plotted in A. In B and
C the thickness of layer 1 is greatly exaggerated to
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show the strain of the initally straight vertical
passive markers.

The R,=5 models show many similarities with the
R,=2 models displayed in Fig. 3. The convex shape
of the upper surface of model R,=5,4 whose vis-
cosity n; is high (10?2 poise), the central stretching
of layer 2 in models with softer basal layer and the
concave shape of the surface of the latter models are
qualitative repetitions of features exhibited by the
R,=2 models in Fig. 3. There are, however, inte-
resting quantitative differences. One of these is the
relationship between the aspect ratio — or rather
the length of the horizontal dimension since the
height is the same for the models — and the value
of the viscosity of layer 1 at which extrusion occurs.
In models with aspect ratio R,=2 extrusion oc-
curred when the viscosity 1, is as high as 10'7 poise
whereas in models with R,=5 extrusion does not
take place unless the viscosity of the basal layer is
10'® poise or less. This well displayed effect in the
two sets of models proves to be generally valid: the
greater the aspect ratio — for models with the same
thicknesses, H, and H,, — the less viscous must the
basal layer be for extrusion to occur. This con-
clusion is not only intuitively reasonable but also
well documented by the relationships found in mod-
els with aspect ratio 20, 100 and 200. Some relevant
information is recorded in Tables 1, 3, 4 and 5.

Models with aspect ratio R,=20

Also in these models H,=5000m, H,=50m, n,=10?
poise and 0;=0,=2.8 g/cm’

Fig 5 shows deformed shapes after 5-10° years
assuming steady velocity equal to the initial velo-
city. In B the viscosity of the not shown basal layer
is 10?2 poise. In A m;=10' poise. The stippled
outline in A is the initial profile of layer 2, also valid
for model B. The passively deformed, initially
straight and vertical markers in layer 1 are seen in A
where the thickness of the layer is greatly exagger-
ated. In A a very faint concave curvature of the top
surface is possibly noticable, in accord with the hor-
izontal tensile stress created in layer 2 by drag from
the extruding basal stratum.

In the R,=20 models the length is 100 km and it
is only reasonable that the basal layer has to be ra-
ther mobile for extrusion to occur. The calculation
puts 10 poise as the maximum limit for the vis-
cosity which permits extrusion of layer 1. This is
visualized in Fig. 5, numerical detailes are reported
in Tables 1 and 3.
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Fig. 4. Right half of spreading double layer viscous structure. Stippled outline shows initial profile con-
taining passive markers; aspect ratio R,=L/H,=5. Layer 1 not shown in A; in B and C thickness H,
greatly exaggerated. Solid profile and markers define deformation after 5 10° years had the initial velo-
city been constant during that time. Thickness H,=5000m, H,=50m, density of both layers 2.8g/cm?,
viscosity of layer 2 is 10 poise in all models, viscosity of layer 1 is 10°% poise in A, 10'” poise in B and
10'® poise in C. See text and Tables 1 and 2.

Fig. 5. Spreading double layer viscous structure with aspect ratio R,=L/H,=20, H,=5000m, H,=50m
(not shown in B and §reatly exaggerated in A), viscosity of layer 2 is 10> poise in both models, vis-
cosity of layer 1is 10% in B and 10'° in A. Density is 2.8g/cm® in both layers.

Initial profile with passive markers stippled in A. Solid outline and markers define deformation after
5. 10° years had the initial velocity been unchanged. See text and Table 3.
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Table 3. Horizontal, U, and U,, and vertical, V, and V,,
velocity in cm/year at differen levels at the front face of
layer 1 and 2 in model with aspect ratio R,=20. Ni gives
hight of level in each layer, expressed in parts of the full
heights H; and H,. Note that U; assumes maximum at
level between Ni=.6 and .7 in layer 1, and that U, shows
a small increases toward the base, assuming maximum
value at the contact between the two layers. The latter
condition is evidence of drag from the extruding mass of
the basal layer.
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Table 4. Horizontal, U; and U,, and vertical, V, and V,,
velocity in cm/year at differen level at the front face of
layer 1 and 2 in model with aspect ratio R,=100. Ni gives
height of level in each layer, expressed in parts of the full
heights H, and H,. Note that U; assumes maximum at
level between Ni=.7 and .8 in layer 1, and that U, shows
a small increases toward the base, assuming maximum
value at the contact between the two layers. The latter
condition is evidence of drag from the extruding mass of
the basal layer.

H,=5000m, H,=50 m, R,=20, n,=10?* poise, n,=10"
poise 0;=0,=2.8g/cm".

U, U, v, v, Ni
5.375085 5.370486 —.002535 —.211332 1
6.448688 5.371345  —.002295 —.190465 9
7.164267 5.372115 —.002004 —.169594 8
7.521820 5.372796 —.001680 —.148720 7
7.521349 5.373389 —.001342 —.127842 6
7.162853 5.373893 —.001006 —.106962 5
6.446332 5.374308 —.000692 —.086080 4
5.371786 5.374635 —.000416 —.065195 3
3.939215 5.374874 —.000196 —.044309 2
2.148620 5.375024  —.000052 —.023423 1
0.000000 5.375085 —0.000000 —.002535 0

H,=5000m, H,=50m, R,=100, n,=5-10"* poise, n,=10?
poise 0;=0,=2.8g/cm".

U, U, v, v,
26.865664 26.864924  —.002065 —.222380
29.385798 26.865063 —.001829 —.200349
30.748887 26.865187 —.001569 —.178318
30.954932 26.865297 —.001295 —.156287
30.003932 26.865392 —.001021 —.134255
27.895888 26.865474  —.000757 —.112224
24.630799 26.865540 —.000516 —.090192

cmivwBnaurpio—Z

20.208666 26.865593  —.000307 —.068161
14.629488 26.865631 —.000144 —.046129
7.893266 26.865655 —.000038 —.024097
0.000000 26.865664 —0.000000 —.002065

Models with aspect ratio R,=100 and 200

With aspect ratio 100 or more, 5000 m thick structu-
res will extend horizontally 500 km or more; models
with R,=200 will initially extend 1000 km across the
base.

Numerical models with dimensions of this order
are believed to be informative as regard the motion
of thrust sheets.

Obviously a plot of models with R,=100 or 200
on a page of the actual size is hardly meaningful —
the plot will simply be a line across the page no
more than a couple of milimeters thick. Relevant
results from the computation are therefore only
presented numerically, Tables 4 and 5.

Again the significant geometrical and mechanical
properties are: H,=5000 m, H,=50 m, m,=10%
poise and @,;=0,=2.8gm/cm>. Tables 1, 4 and 5 dis-
play the velocities at selected values of n;. As ex-
pected when n;=n), then the velocity at correspond-
ing points is less for model R,=200 than for model
R,=100, and both structures are considerably less
mobile than models R,=2, R,=5 and R,=20 pro-
vided also the latter are compared under the con-
dition n;=n,.

However, the most interesting and perhaps
somewhat surprising result obtained is that models
with large aspect ratios move faster than models
with smaller aspect ratios if the viscosity of the basal
stratum is less than certain limits, even if the high
viscosity of layer 2 remains unchanged. The com-

parison is of course made among models whose vis-
cosity of corresponding layers are the same. As an
example, assume a basal layer whose effective vis-
cosity compares with that often accepted for rock
salt, say 10! poise. Let the viscosity of layer 2 re-
main at the usual 10?2 poise. Under these conditions

Table 5. Horizontal, U, and U,, and vertical, V| and V,,
velocity in cm/year at differen levels at the front face of
layer 1 and 2 in model with aspect ratio R,=200. Ni gives
height of level in each layer, expressed in parts of the full
heights H; and H,. Note that U, assumes maximum at
level between Ni=.6 and .7 in layer 1, and that U, shows
a small increases toward the base, assuming maximum
value at the contact between the two layers. The latter
condition is evidence of drag from the extruding mass of
the basal layer.

H,=5000m, H,=50m, R,=200, n,=10'" poise, n,=10%
poise, 0;=0,=2.8g/cm?

U, U, v, v,
53.735459 53.735006 —.002520 —.212086
64.266456 53.735090 —.002280 —.191129
71.263110 53.735166 —.001990 —.170173

74.725421 53.735234
74.653389 53.735292
71.047014 53.735342
63.906297 53.735383

—.001668 —.149216
—.001331 —.128260
—.000998 —.107303
—.000686 —.086347

chivwbrnaumo—Z

53.231237 53.735415 —.000412 —.065390
39.021834 53.735439  —.000195 —.044433
21.278088 53.735453  —.000052 —.023477
0.000000 53.735459 —0.000000 —.002520




H1

Bull. Geol. Inst. Univ. Uppsala, N.S. 14 (1988)

the data in Table 1 demonstrate that the rate of for-
ward motion increases very markedly indeed, when
the aspect ratio becomes large. Consider the top
edge of the front face which moves with the hor-
izontal velocity U,=.472 for R,=2, 1.336 for R,=5,
5.203 for R,=20, 15.642 for R,=100 and not less
than 17.184 for R,=200, all in cm/year.

This obviousy too fast spreading will be moder-
ated by higher effective viscosity of the real rocks,
by rock members with finite strength in the hetero-
geneous natural structures, by less height of the
natural profiles and by their gentler slope.

In accord with the large aspect ratios of the pres-
ent models the critical viscosity for extrusion of
layer 1 is small, viz. 5-10'3 poise for the models with
aspect ratio 100, and 10" poise for models with
aspect ratio 200, Tables 4 and 5.

Thermodynamics applied to deformation structures
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Strain in the basal layer

The large number of numerical tests performed on
models similar to those described here have given
interesting information on the behaviour of the
basal layer in response to changing viscosity.

Let all parameters be constant except viscosity 1,
in a model with aspect ratio R,=5, heights H,=5000
m and H,=50 m, viscosity n,=10*? poise and den-
sity 0,=0,=2.8 g/cm>.

The strain in the basal layer is visualized by defor-
mation of the initially straight, vertical passive
markers shown stippled in the initial profile of layer
1, see Fig. 6A where the thickness is exaggerated by
a factor 40. As the viscosity of layer 1 diminishes
from n;=5 10' to 9 10'5 poise through steps 4-10'°,
3.10', 2-10'6, 1.5-10', 10'° to 9-10"° poise the verti-

L/ ///g/)jfﬁé)/f/;r)

I///'/C//,/;fy

A

L

Fig. 6. Strain in layer 1 in spreading double layer viscous structure. Layer 2 not shown. H,=5000m,
H,=50m, R,=5, viscosity of layer 2 is 10?2 poise and density of both layers 2.8g/cm®. Viscosity of layer
1is 5-10' in B, 4-10'° in C, 3-10'° in D, 2-10'® in E, 1.5-10'° in F, 10'® in G and 9-10" in H, all in
poise. Initial profile and undeformed passive markers stippled in A where thickness H, is exaggerated
by a factor 40. Profile of layer 1 and distorted markers would have been as shown for different viscosi-
ties in B to H had the initial velocity been unchanged during 5 10° years. The increasingly long ex-
truded lobe in D, E, F, G, H visualizes the magnitude of the initial velocity of extrusion rather than

the final shape of the extruded material.
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cal squeezing and the rate of extrusion are intensi-
fied. If the viscosity of layer 1 is relatively high the
passive markers are chiefly affected by the horizon-
tal motion of layer 2 which tilts the markers by dis-
placing their top in the direction of motion. (At the
same time the small vertical compression and hor-
izontal extension of layer 1 give the markers a
gentle curvature, the convex side facing down to the
right; see Fig. 6, B and C).

If the viscosity of layer 1 is gradually decreased
the intensified extrusion makes its effect on the
strain in layer 1 more and more markedly as is
visualized by the changing shape of the strain mark-
ers in Fig. 6. It is interesting to note how the level
of maximum horizontal flow rate gradually moves
concordant with the decrease of the viscosity 7,
from the contact against layer 2 to the central level
in layer 1, where maximum flow rate (due to maxi-
mum extensive strain rate) remains even if the vis-
cosity is further decreased. (Fluid dynamicist
readers will recognize that the type of flow devel-
oped in layer 1 is not unlike ”Couette flow” which
is characterized by slow non-inertial flow in the
space between parallel plates, one of which moves
with or against the fluid. Cole, 1962, p.86. The ver-
tical compression which is necessary to drive the
”fluid” flow in the present models is however not
active in normal Couette flow, in which also the ve-
locity of flow is constant along the channel.

The type of strain in layer 1 is essentially a combi-
nation of simple shear parallel to the layering and
pure shear with axis of maximum extension parallel
to the layering; that is, maximum extensive strain
of the pure shear part coincides with the shear direc-
tion in the simple shear part. Within narrow contact
zones along the base and along the contact with
layer 2, the strain is chiefly simple shear; in a nar-
row zone along the level of maximum horizontal
motion the strain is essentially pure shear. In the
intervening space on either side of maximum exten-
sion pure and simple shear occur together, the rela-
tive partition of the two types changing gradually
from simple shear along the contacts to pure shear
within the zone of maximum horizontal flow rate.

The strain discussed here is associated with a
pressure gradient pointing from the edges of layer 1
toward the center. The pressure gradient assumes
maximum value at the edges and diminishes toward
the center where it becomes zero. The horizontal
flow in layer 1 increases in intensity from zero at the
central cross section to maximal values at the two
edges.
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