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In the geological sciences thermodynamics is chiefly used in the treatment of mineral 
assemblages. However, the laws of thermodynamics are not limited to chemical phase prob­
lems but are equally weil applicable to mechanical phenomena such as the deformation of 
rocks du e to deviatoric stress and/or the body force of gravity. 

The failure of many attempts to explain preferred mineral orientation in strained rocks 
in terms of classical equilibrium thermodynamics illustrates the need to apply "Non-equi­
librium thermodynamics" or the "Thermodynamics of Processes" in which "Extreme Rate 
of Entropy Production" or "Extreme Rate of Energy Dissipation" are governing principles. 

Combined with the laws of classical mechanics, thermodynamical concepts control the 
evolution of deformation structures ranging in scale from crenulation cleavage, through 
folds and boudinage, to diapirs and orogenie nappes. Buckle fotding and calculations of the 
vetocity of the advance of thrust sheels are presenled as examples. 
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Introduction 

In view of the successful application of thermo­
dynamics to mineral assemblages in metamorphic 
rocks in the last 30 years or so, it is encouraging to 
find that deformation structures in plastico-viscous 
rocks may also successfully be treated by thermo­
dynamic methods. Admittedly, the few published 
treatments of even rather simple deformation struc­
tures such as preterred mineral orientation in 
strained rocks have not been especially successful, 
e.g. MacDonald (1957), Kamb (1959, 1961), Ver­
hoogen (1951). 

However, I believe the reason for this lack of suc­
cess is the use of equilibrium thermodynamics ra­
ther than open system thermodynamics or non equi­
librium thermodynamics which is required for the 
study of solids yielding under stress. Crystals ex­
posed to deviatoric stress do not represent equi­
librium. As Iong as the deviatoric stress acts, the 
situation is intrinsically unstable and, for rocks 
exhibiting no defined yield point, an equilibrium 
state will not be reached as Iong as the stress re­
mains deviatoric. Diffusion and various kinds of 
chemical processes make regional metamorphic 
rocks yield and flow at stresses much below the 
short-term yield strength as measured by the rock 
mechanicists in the laboratory. 

Accordingly, classical equilibrium thermo­
dynamics cannot be expected to yield useful infor-

mation or profound understanding when it comes to 
structures developed under deviatoric stress. The 
theories of "non equilibrium thermodynamics", 
"open system thermodynamics" or the "thermo­
dynamics of processes" must be applied. 

These three terms are synonyms for the kind of 
thermodynamics which is applicable to systems not 
in equilibrium, see e.g. Onsager (1931), Prigogine 
(1947, 1967), Prigogine & Stegers (1984) and Gyar­
mati (1970). 

The chief rule for the control of the evolution of 
systems not in equilibrium - for example mechani­
cally stressed systems - is that the path of evolution 
is determined by prevalence of those processes 
which dissipate energy with extremum rate. De­
pending upon whether the velocities of the various 
processes or the forces are varied during the operat­
ion of seeking the extremum, the latter is either a 
maximum or a minimum. 

For viscous processes, productian of entropy is 
equal to dissipation of energy divided by the instan­
taneous temperature. Hence the criterium for the 
prevalent process: ''extremum rate of dissipation of 
energy'' is equivalent to "extremum rate of pro­
ductian of entropy''. Onsager (1931) uses "extre­
mum (minimum) dissipation of energy'' as the con­
trolling principle, while Prigogine (1947) applies 
"extremum (minimum) productian of entropy" as 
the controlling f act or. What is stated above means 
that the structures which develop in non equilibrium 
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systems are controlied by the details of the pro­
cesses which take place. 

This condition clashes with a basic premise of 
equilibrium thermodynamics, viz. the premise that 
the equilibrium situation as manifested by the min­
erals that develop, their exact chemical composition 
etc. - is completely independent of the ways and 
means by which equilibrium is reached. 

As examples on how structures in deformed rocks 
are controlied by the criteria of non equilibirum 
thermodynamics, of open system thermodynamics 
or of the equivalent thermodynamics of processes, 
we shall consider 
(l) buckling of an embedded sheet of rock, and 
(2) the gravitational spreading of a composite oro­
genie nappe. 

Both systems have been treated in earher pubii­
catians (Buckling: Biot, 1961; Fletcher, 1977; 
Smith, 1975; Smoluchowski 1909; Ramberg 1962, 
1981; Spreading: Price, 1973; Elliott, 1976; Ram­
berg, 1986) but not from the view point of non 
equilibrium thermodynamics. 

Buckle folding of embedded layer 

The mode! consists of a layer with high effective vis­
eosity embedded between two hal f spaces of low vis­
eosity (In practice the half spaces are layers with 
thicknesses exceeding the wavelength of the folds 
that form.) 

Compression parallel to layering produces folds 
along the embedded layer. The problem is to find 
the preterred - or dominant - wavelength which 
tends to develop from a spectrum of statistical fluc­
tuations of initial sinusoidal deflections with very 
small amplitudes. The mechanism which controls 
the initial wavelength of those deflections that sur­
vive and grow during evolution of the system is acti­
vated at the very beginning of the buckling process. 
When seeking the preferred wavelength it is there­
fore sufficient to consider infinitisimal motion and 
strain. 

The problem is weil suited to demonstrate that 
either maximum or minimum rate of energy dissi­
pation or rate of entropy productian can be used to 
find the "preferred path of evolution" of the system. 

In systems of this kind the "preferred path of 
evolution" is manifested by a preferred - or domi­
nant - wavelength of the folds which develop. To 
find the initial wavelength of the buckle folds which 
prevail during evolution of the system, the rate of 
growth of amplitude in most studies is calculated as 
a function of the wavelength of the corresponding 
fold and of the compressive force. 
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The preferred wavelength is found to coincide 
with the maximum rate of relative growth of ampli­
tude if the compressive force is kept equal for the 
spectrum of wavelengths which may develop. 

When the compressive force is kept equal and 
constant, and the amplitude/wavelength ratio is 
small, then maximum rate of amplitudinal growth 
means maximum rate of energy input due to the 
buckling force. This is so because maximum rate of 
relative growth of amplitude coincides with maxi­
mum rate of relative shortening of wavelength due 
to buckling. This will be demonstrated below. 

If, on the other hand, the energy of evolution of 
the folds is based on equal rate of relative growth 
of amplitude while the compressive force is varied 
then the preferred wavelength coincides with mini­
mum buckling force and with minimum rate of 
energy input. 

To focus the discussion let us consider briefly the 
dynamic analysis of the mode!. 

It was mentioned above that different methods 
have been used in the analysis of viscous buckling. 
A "thick-plate-bending method" similar to one of­
ten used in applied mechanics, is not the most exact 
one but it is simple and quite illuminating, demon­
strating very weil the essen tia! points of the buckling 
phenomenon. For more exact analyses see Biot 
(1961), Fletcher (1977), Smith (1975), Ramberg 
(1970). 

Restricted to small amplitude/wavelength ratios 
and Newtonian materials the compressive layer­
parallel force needed to buckle the layer itself is cal­
culated for different rates of compression and earn­
bined with the force needed to press the bends into 
the adjacent materials and there produce the so­
called contact strain on either side of the layer. 

In this way relationships are obtained between 
the rate of growth of amplitude or the rate of shor­
tening of wavelength and the compressive stress 
parallel to the general trend of the buckling layer. 
See eqns (l and 6). The general trend of the layer 
is the Iine joining the inflection points of the row of 
huckles. Eqns. (l) is an acceptable approximation 
at <j>< l. 

(l) ob/T]2=(4/(Rm<j>)-<j>/(3Rm)+(2/Rm+2<j>/3) (<j>/ 
2+<j>2/(6Rm) ) l (l +<j>/Rm +<j>2/3) )v/y 

Rm=T]1/T]2, <j>=2rtH/f..., f... is wavelength and T]1/T]2 is 
the viseosity ratio. In this .equation (a rearrange­
ment of eqn (63) in Ramberg, 1962) the amplitudi­
nal velacity divided by the instantaneous amplitude 
- v/y - is termed the "relative amplitudinal growth 
rate" and O�T]1 - the buckling stress divided by the 
viseosity of the layer - is referred to as the "nor­
malized buckling stress". The quantity in the paren-
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thesis in front of "v/y" earresponds in magnitude to 
the normalized buckling stress needed to generate a 
relative amplitudinal growth rate of unit magnitude. 
lt is practical to assign a special name to this quan­
tity: "Specific normalized buckling stress". This in­
dicates the character of the quantity which measures 
the normalized stress specifically needed to make 
the amplitude grow at a rate of unit relative velo­
city. The thus defined "Specific normalized buckling 
stress" will be referred to by the letters Snobs, and 
eqn (1) can be identified by a much shortened ex­
pression: 

(2) ot/1']1 = Snobs v/y 

We see that Snobs contains only two variables, the 
viseosity ratio Rm=l']1/l']2, and the ratio H/f... which 
occurs in �=2rtH/f.... 

Both variables are dimensionless and so is Snobs 
itself. When Snobs is plotted as a function of the 
wavelength/thickness ratio at selected values of 
1']1/1'] 2 we find that Snobs goes through a minimum 
at a f...IH ratio which depends upon the magnitude 
of 1']1/1'] 2. This is presented in Fig l. 

If the rate of relative amplitudinal growth is kept 
eonstant for the spectrum of wavelengths which ma y 
occur, the n eqn (2) shows that the normalized buck­
ling stress goes through a numerical minimum at the 
same wavelength/thickness ratio as does Snobs. 

For a given buckling layer with uniform thickness, 
the buckling force (=stress multiplied by the thick­
ness of the layer times its length parallel to the fold 
axis) assumes minimum value at the same f...! H ratio 
as does the stress. This is the wavelength/thickness 
ratio for which the buckling process meets !east vis­
cous resistance and accordingly by Gauss' Principle 
of Least Constraint, is the initial wavelength of 
those viable huckles which will survive and grow; 
i.e. the huckles with the dominant wavelength. 

With the non equilibrium thermodynamics of 
Onsager and Prigogine in mind it is interesting to 
see if the rate of dissipation of energy (cf. Onsager, 
1931) and/or the rate of productian of entropy (cf. 
Prigogine, 1947) also assume minimal values at the 
same wavelength which minimizes the buckling 
force and the viscous resistance. 

The rate of input of energy per wavelength is the 
buckling force multiplied by the rate of huckle­
shortening per wavelength. 

(Buckle-shortening defines the shortening which 
is due solely to the periodic sidewise deflection of 
the layer. Shortening by homogeneous pure shear is 
not considered in the energy calculation). To evalu­
ate the energy input it is necessary to find how the 
rate of relative shortening of wavelength is related 
to the rate of relative amplitudinal growth. 
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Fig. l. Snobs=specific normalized buckling stress plotted 
as a function of wavelength/thickness ratio. Minimum on 
Snobs curve defines the preferred wavelength/thickness 
ratio. Rm=T]ih']2. 

For sinusoidal huckles with small ampliude/wave­
length ratio the rate of shortening is related to the 
rate of growth of amplitude by the approximation 

This equation is readily modified to give the relation 
between the rate of relative shortening of wave­
length and rate of relative amplitudinal growth: 

(4) �If...= -2rr? (y!Åfv/y 

(s) vly= -11(2re(y!Å)2) MÅ 
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If v/y in equation (l) is replaced by above ex­
pression then an equation is obtained relating the 
normalized buckling stres� to the rate of relative 
shortening of wavelength, A./A., eqn (6). 

(6) olflJ1=( (4/(Rm<j>)-<j>/(3Rm)+(2/Rm+2<j>/3) 
(<j>/2+<j>�/(6Rm)) /(l+<j>/Rm+<j> 2/3)) l (-2n2 

(y!W> )A.IA., 

or: 

The proportionallity factor between olflJ1 and �/A. is 
Snobs multiplied by the quantity -11(2n2 (y/A.)2) . 

l t is to be expected that, statistically, the ampli­
tudes of deflections eaused by buckling are pro­
portional to the wavelengths of the corresponding 
huckles. To the extent that this is true, the quantity 

is eonstant for all waves in the spectrum of deflec­
tions. As shown by eqn (7), when the rate of rela­
tive shortening is eonstant then the buckling stress 
- and by implication the buckling force - are 
minimized at the same A./ H ra tio w h ich minimizes 
Snobs. At eonstant rate of relative shortening, the 
rate of energy input is minimized when the stress is 
minimized. We conclude from what has been stated 
above that for eonstant relative velecity - eonstant 
rate of relative amplitudinal growth, or eonstant 
rate of wavelength shortening as the case may be -
then energy input rate, energy dissipation rate and 
entropy productian rate are all minimized at the 
wavelength/thickness ratio of the dominant wave. 
Some examples are presented in Fig. l. 

After these comments on the energy of buckling 
constrained by eonstant rate of relative amplitudinal 
growth, and eonstant rate of relative shortening of 
wavelength while the normalized buckling stress is 
varied, we shall continue to discuss the energetics 
of buckling, but now constrained by equal buckling 
stress for all wavelengths while the rate of relative 
amplitudinal growth and the rate of relative shor­
tening of wavelength are permitted to vary. 

For this purpose it is practical to invert eqn (2): 

(8) v/y = l!Snobs OtflJJ = Ramp abll11 

In this form of the relationship, the normalized 
buckling stress is the independent variable and the 
relative amplitudinal growth rate is the dependent 
variable. 

The inverse of Snobs is termed Ramp and defines 
the value which the rate of relative amplitudinal 

Ramp 
8.0 
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Fig. 2. Ramp=relative amplification plotted as a function 
of wavelength/thickness ratio. Maximum on Ramp curve 
defines the preferred wavelength/thickness ratio. Rm= 
Y]Jfl"]2. 

growth assumes when the value of the normalized 
buckling stress is equal to unity. 

Ramp may be referred to as the "relative amplifi­
cation" because it amplifies the relative amplitudi­
nal growth rate in proportion to the normalized 
buckling stress. 

Since Snobs as a function of A.IH goes through a 
numerical minimum at a wavelength/thickness ratio 
which depends upon the ratio l]1fl]2 it is evident that 
Ramp, being the inverse of Snobs, must go through 
a maximum at the same wavelength/thickness ratio 
at corresponding visasity ratio. This is demonstrated 
in Fig. 2. 

Provided the normalized buckling stress is kept 
eonstant and equal for the whole spectrum of poten-
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tia! wavelengths of the buckles, then v/y and Ramp 
are linearly related and it follows that the relative 
amplitudinat growth rate goes through maximal 
value at the same /../H ratio as that which minimized 
the buckling stress in the previous mode! with eon­
stant amplitudinat growth rate. On account of the 
established linear relation between relative ampli­
tudinat growth rate and rate of relative shortening 
of wavelength, it follows that the maximum rate of 
input of driving energy coincides with the preterred 
wavelength. In other words, if the buckling stress is 
kept eonstant and the rate of relative growth of 
amplitude is allowed to vary, then i t is maximum 
rate of energy dissipation, and maximum rate of 
entropy production, which are the criteria that de­
termine the "preferred path of evolution". 

Spreading of an orogenie nappe 

The two-dimensional nappe consists of two layers, a 
bottom layer (l) with thickness Hh eonstant vis­
eosity TJI and d ensity g1, and an upper layer (2) 
whose relevant properties are H2, TJ2 and Q2. 

The motion in the system is approximated by two 
polynomial stream functions: 

(9) 'I/'J=-(ay12 +byl3 +dyl4 +eyls +fyJo) XJ 
+(cy12 +513dy13 + 10/3ey14 + 14/3fy15) x13 
-(ey12 +713fy13) x15 

valid for layer (1), and: 

(10) 'l/'2=(a21 +a22Y2 +a23yl +a24Y23 +a2sY24+a26 
Y25) x2 +(a41+a42Y2-a2sY/ -a61Y/ -5/ 
3a26Yl -5/3a62Y23) X23 +(a6J +a62Y2)x/ 

valid for layer (2). 

The equations are selected from the stream func­
tion solutions given in Ramberg (1986). For these 
two functions to yield information on vetocity, 
strain, stress etc. the coefficients must be de­
termined. Determination of the coefficients is partly 
done by applying the boundary constraint of con­
tinuous normal and shear stress as weil as continu­
ous vetocity at the contact between the two layers. 
The lack of shear at the free top surface of layer (2) 
is also used for coefficient determination. This oper­
ation leads to all coefficients in stream function two, 
i.e. a21 to a62 in eqn (10) and c, d, e and f in eqn 
(9), being related to a and b in stream function (9). 
For details see Ramberg (1986). 

It is for the final determination of a and b that the 
principles of non equilibrium thermodynamics are 
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useful. Non equilibrium thermodynamics requires 
that the rate of dissipation of potential energy due 
to viscous strain shall assume an extreme value. 
(For the case in question the extremum is a maxi­
mum, in accord with the condition that the force is 
the same for all possible processes that constitute 
the yield, while the velocities are variable, see ear­
lier discussion in the seetio n on buckling). 

To apply the requirement of extremum dissi­
pation or extremum entropy production, formulas 
for the energies are needed. 

The instantaneous rate of change of strain energy 
is obtained by integrating the specific strain energy 
rate, ex + ex y ( = the energy rate per volume ): 

(11) ex = 4TJiE/ = 4TJi(du/dxf = 4TJi(-d2'1j1/ 
6x6y)2, 

and 

(12) exy = TJ\'x/ = TJ1 (du/(Jy + 6v/6x)2 
(62'1j1/6x2 - 62'1j116l)2 

and the specific potential energy rate: 

over a cross section slice of unit thickness parailet to 
the plane x, y through the mode!. TJI and Q1 are used 
for the portion of the slice that cuts layer (l) and TJ2 
and g2 for the portion that cuts through layer (2). 
Here u and v are vetocity components in harizontal 
and vertical directions respectively; Yxy is shear 
strain rate, Ex is rate of longitudinal strain in direc­
tion x and g is acceleration of gravity. The inte­
gration leads to the two energy equations (14) and 
(15) 

for the strain energy rate, and 

referring to the potential energy rate. 
Both equations are valid for the whole cross sec­

tion slice of unit thickness. 
The factors Aey• Bey• Cey• Apat and Bpot in front 

of the coefficients a and b are now known, but much 
too lengthy to present in full here: the interested 
reader is referred to the author's original pubii­
catian op cit. 1986. It is worth mentioning, though, 
that the factors in question are functions of but 
three variables, viz. the thicknesses of the two lay­
ers and the length of the cross section. 

(In eqns (14) and (15) only the properties of layer 
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(2) seem to occur; but that is because thickness, 
density and viseosity of layer (l ) are "hidden" in the 
factors Ary, BEY' Cry, Apot and Bp01). 

In equations (14) and (15) all is known except the 
two coefficients a and b which in fact control the 
remaining coefficients in both stream functions. A 
determination of a and b accordingly makes the 
stream functions numerically applicable to the 
mode l. 

To obtain numerical values for a and b by the 
method of maximizing the dissipation rate we make 
use of the Lagrange Multiplier. To this end a new 
function, F, is formed: 

(16) F= Epot + A(Epot + Ery) 

and the partial derivatives of F with respect to a, b 
and A are put equal to zero. Note that Epot + EEy =0 is the side condition stating that strain energy 
rate at all time is balanced by the rate of decline of 
potential energy. A in the above equation is called 
the Lagrange Multiplier. For explanation of the La­
grange Multiplier method see Protter and Morrey 
(1964). 

From the set of three homogeneous equations de­
veloped when the partial derivatives are equated to 
zero, it is possible to eliminate A and determine the 
coefficients a and b. The thus found values for a and 
b are inserted in the functions that relate the re­
maining stream function coefficients to a and b, a21, 
a22 ... a6t, a62 and c, d, e, f as functions of a and b 
are now inserted in stream functions (9) and (10) 
from which the instantaneous velacity field follows 
by differentiation: 

u = -o'J!Ioy and v = o'J!Iox 

These instantaneous velacity fields may then be 
multiplied by a reasonable time step to give the ini­
tial displacement field. 

Numerical examples are discussed in the seetian 
below. 

Models with aspect ratio R2=2 

Fig. 3A shows an initial undeformed profile with a 
set of vertical passive strain markers, valid for mod­
els B, C and D. H2=5000 m and H1 =50 m. H1 is 
exaggerated by a factor 10 in A. Density of both lay­
ers, Q1 =g2 = 2.8g/cm3 and viseosity of layer 2, Tj2, 
equals 1022 poise while the viseosity of the basal 
layer varies: TJ1 = 1022 poise in B, 1017 poise in C and 
1016 poise in D. B, C and D show the deformed 
shape after 5 ·105 years h ad the initial instantaneous 
velacity been eonstant during this length of time. 
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Fig. 3. Gravitational spreading of double layer viscous 
structure with basal layer l, 50 m thick, density 2 . 8  g/cm3 
and viseosity 1022 poise in B, 1017 poise in C and 1016 poise 
in D; and an upper layer 2, 5000 m thick, density 2 . 8 g/cm3 
and viseosity 1022 poise. Aspect ratio R2=LIH2=2 . A 
shows initial profile with passive markers, H1 of basal 
layer exaggerated by factor 40. B, C and D show deformed 
profiles had initial vetocity remained eonstant during 5 105 
years. As vetocity is actually not eonstant the deformations 
visualize variation of initial vetocity at the boundary and 
at the markers rather than the final shape, see text and 
Tables l and 2 .  The vetocity of extrusion of layer l in D 
is so large that the front would be far outside the limit of 
the illustration. 

The velocity is of course not eonstant for which 
reason the deformed shape is to be regarded as a 
geometric visualization of the varying initial velacity 
at the boundary rather than a final shape. (One may 
wonder what is the source of the viseosity value 1022 
poise which we use so frequently in the models? The 
source is Haskel (1935); 1022 poise is the classical 
value for the average viseosity of the crust and the 
upper part of the mantie treated as a unit and cal­
culated by Haskel based on data from the rate of 
postglacial uplift in Scandinavia). 

lt is interesting to consicter how the deformation 
- or more exact: the initial velacity field - varies 
with changing viseosity of the basal layer. 

If there is no differencce between the viseosity of 
the two layers, then the deformation in the basal 
layer is chiefly simple shear eaused by drag from the 
superincumbent mass whose lateral spreading in­
creases uppward. In mode! B there is very little ver­
tical squeezing of layer l and its viseosity is too high 
to permit horizontal extrusion. Along its base, layer 
2 encounters great resistance due to the combi­
nation: high viseosity and small thickness of layer l. 
The mean pressure in the central part of layer 2 is 
therefore relatively high as in fact indicated by the 
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Table J. U1 and V1 are harizontal and vertical velocities at the contact between the two layers at the front face; U2 and 
V2 are harizontal and vertical velocities at the top of the front face of layer 2. The last value of U1 for each model is the 
maximal extrusion velacity of Jayer l at the viseosity in question. 
Ufree is the average velacity of the front face and Vfree the average velacity of decline of the top surface of layer 2 if 
t here we re fr e e slip at the b ase. 
All velocities are in cm/year. See Tables 2, 3, 4 and 5. lj1 is in poise. Column "ll" gives the exponent in the expression 
for the viseosity. 

H2=5000 m, H1=50 m, lj2=1022 poise, Q1=g2=2.8g/cm3 

R2=2, Ufree= .532192, Vfree=-.260963 

TII UJ U z VI V z 

22 .005246 .303135 -.000018 -.129849 
21 .051646 .336734 -.000160 -.143911 
20 .301692 .438062 -.000696 -.183188 
19 .516955 .487478 -.000971 -.188127 
18 .556004 .492318 -.001177 -.182853 
17 .571188 .471632 -.003998 -.143409 
17 1.269168 See Table 2 

R2=5, Ufree= 1.330481, Vfree=-.260963 

TII UJ U z VI V z 

22 .005853 .336135 -.000019 -.129954 
21 .058645 .393264 -.000177 -.156038 
20 .415098 .663204 -.000868 -.234619 
19 1.075757 1.139646 -.001236 -.257297 
18 1.311789 1.315541 -.001273 -.255344 
17 1.342923 1.336334 -.001321 -.246014 
16 1.354070 1.323144 -.004846 -.173244 
16 3.688546 

R2=20, Ufree=5.321925, Vfree=-.266096 

Tll u l U z VI V z 

22 .003570 .183400 -.000004 -.026791 
21 .039037 .236291 -.000043 -.037432 
20 .399076 .605228 -.000431 -.115289 
19 1.672415 1.767629 -.001161 -.240920 
18 4.078730 4.103834 -.001330 -.268224 
17 5.200633 5.203771 -.001336 -.268588 
16 5.357413 5.357175 -.001325 -.262666 
15 5.375086 5.370487 -.002536 -.211332 
15 7.521821 See Table 3 

gentie convex curvature of the top surface of the 
mode!. (Due to the great vertical exaggeration of 
layer l in drawing B (here about 20 times) it is hard 
to recognize the gentie tilt of the passive markers 
which indicate the magnitude of the small shear 
strain in layer l. In models with greater shear strain 
along the base the tilt of the markes is very pro­
nounced, see Fig. 4). 

The relatively low viseosity of layer l in mode! C 
permils a considerable amount of vertical squeezing 
by the weight of the overburden, and in-spite of its 
small thickness, layer l is extruded quite rapidly. 
Details of the vetocity distribution are recorded in 
Tables l and 2. The harizontal motion during ex-

R2=100, Ufree=26.609625, Vfree=-.26609625 

TII UJ U z VI V z 

22 .000812 .041224 o -.001250 
21 .009167 0.54804 o -.001817 
20 .125064 .187395 -.00003 -.008025 
19 1.214855 1.276036 -.000289 -.059854 
18 5.501544 5.531198 -.001012 -.203781 
17 15.633015 15.642454 -.001320 -.265235 
16 24.839256 24.840800 -.001342 -.269725 
15 26.654741 26.654867 -.001333 -.267422 
14 26.854354 26.853979 -.001469 -.244853 
13 26.865604 26.864924 -.002065 -.222380 
13 30.954932 See Table 4 

R2=200, Ufree=53.219255, Vfree=-.2660925 

TII UJ U z VI v, 
22 .000408 .020695 o -.000314 
21 .004609 .027545 o -.000457 
20 .063783 .095530 o -.002054 
19 .704641 .739809 -.000086 -.017852 
18 4.952857 4.978176 -.000561 -.112965 
17 17.174310 17.184053 -.001206 -.242250 
16 40.942609 40.945132 -.001338 -.268913 
15 52.030121 52.030422 -.001341 -.269424 
14 53.574745 53.574728 -.001327 -.263519 
13 53.735459 53.735006 -.002520 -.212086 
13 74.725421 See Table 5 

trusion generates shear stress at the contact to layer 
2 which accordingly becomes exposed to harizontal 
tensile stress, increasing in iniensity from zero at the 
front face(s) to maximal value in the center of the 
symmetrical body. As the vertical normal stress 
component is compressive throughout layer 2 the 
result is a deviatoric stress which eauses harizontal 
tensile strain that gives rise to maximal stretching in 
the center and a concave upper surface of the 
mode!. The extrusion of a relatively "soft" basal 
stratum and its effect on a more competent overbur­
den is enhanched if the viseosity of the basal stratum 
is decreased. This is demonstrated in mode! D 
where the viseosity of layer l is no more than 1016 
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Table 2. Horizontal, U1 and U2, and vertical, V1 and V2, 
velocity in cm/year at different levels at the front face of 
layer l and 2 in models with aspect ratio 2 and different 
viseosity of the basal layer. Ni gives height of leve! in each 
layer, expressed in parts of the full heights H1 and H2. 
Note that U1 is maximum close to the middle leve! in layer 
l, and that U2 increases toward the base, assuming maxi­
mum value at the contact between the two layers. The lat­
ter condition is evidence of drag from the extruding mass 
of the basal layer. 

H2=5000m, H1=50m, T]2=1022 poise, Q1=Q2=2.8g/cm3 

R2=2, T]1=1016 poise 

u, U2 
.623642 .371312 

9.338533 .418161 
16.102923 .460207 
20.916812 .497448 
23.780200 .529887 
24.693087 .557522 
23.655473 .580353 
20.667357 .598381 
15.728740 .611605 

8.839621 .620025 
0.000000 .623642 

T]1=1017 poise, R2=2 

.571188 .471632 

.861490 .490161 
1.074587 .506786 
1.210480 .521506 
1.269168 .534320 
1.250652 .545229 
1.154931 .554233 

.982005 .561331 

.731875 .566523 

.404540 .569809 
0.000000 .571188 

v, 
-.081194 
-.078932 
-.072769 
-.063678 
-.052635 
-.040616 
-.028595 
-.017547 
-.008449 
-.002275 

-0.000000 

-.003998 
-.003759 
-.003382 
-.002904 
-.002365 
-.001803 
-.001257 
-.000765 
-.000366 
-.000098 

-0.000000 

v2 
-.023246 
-.036160 
-.046851 
-.055560 
-.062527 
-.067993 
-.072196 
-.075377 
-.077778 
-.079636 
-.081194 

-.143409 
-.132281 
-.120275 
-.107485 
-.094006 
-.079934 
-.065363 
-.050389 
-.035106 
-.019611 
-.003998 

Ni 
l 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 
.l 
o 

l 
.9 
.8 
.7 
.6 
.5 
.4 
.3 
.2 
.l 
o 

poise, in other words, even less than that of rock 
salt which under natural conditions appears to 
exhibit an effictive viseosity around 1017 poise. In 
mode! D the maximal rate of extrusion is no less 
than 24.69 cm/year as recorded in Table 2. 

Models with aspect ratio R2=5 

Models R2=5;A, B, C whose right half profiles are 
shown in Fig. 4 start out with initial aspect ratio 
R2=5 (stippled outline). H2=5000 m, H1=50 m, 
TJ2= 10

22 
poise and Q1 =Q2=2.8g/cm3. Viseosity TJt is 

10
22 

in A, 1017 in B and 1016 for C, all in poise. 
The t hin basal layer is not p Iotted in A. In B and 

C the thickness of layer l is greatly exaggerated to 
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show the strain of the initally straight vertical 
passive markers. 

The R2=5 models show many similarities with the 
R2=2 models displayed in Fig. 3. The convex shape 
of the upper surface of model R2=5,A whose vis­
eosity TJt is high (1022 poise), the central stretching 
of layer 2 in models with softer basal Iayer and the 
concave shape of the surface of the latter models are 
qualitative repetitions of features exhibited by the 
R2=2 models in Fig. 3. There are, however, inte­
resting quantitative differences. One of these is the 
relationship between the aspect ratio - or rather 
the Iength of the harizontal dimension since the 
height is the same for the models - and the value 
of the viseosity of layer l at which extrusion occurs. 
In models with aspect ratio R2=2 extrusion oc­
curred when the viseosity TJI is as high as 1017 poise 
whereas in models with R2=5 extrusion does not 
take place uniess the viseosity of the basal layer is 
1016 poise or less. This weil displayed effect in the 
two sets of models proves to be generally valid: the 
greater the aspect ratio - for models with the same 
thicknesses, H1 and H2, - the less viscous must the 
basal layer be for extrusion to occur. This con­
clusion is not only intuitively reasonable but also 
weil documented by the relationships found in mod­
els with aspect ratio 20, 100 and 200. Some relevant 
information is recorded in Tables l, 3, 4 and 5. 

Models with aspect ratio R2=20 

Also in these models H2=5000m, H1 =50m, TJ2= 1022 

poise and Q1=Q2=2.8 g/cm3 
Fig 5 shows d eformed shapes after 5 ·105 years 

assuming steady velocity equal to the initial velo­
city. In B the viseosity of the not shown basal layer 
is 10

22 
poise. In A TJ1 = 1015 poise. The stippled 

outline in A is the initial profile of layer 2, also valid 
for model B. The passively deformed, initially 
straight and vertical markers in layer l are seen in A 
where the thickness of the Iayer is greatly exagger­
ated. In A a very faint concave curvature of the top 
surface is possibly noticable, in accord with the hor­
izontal tensile stress created in layer 2 by drag from 
the extruding basal stratum. 

In the R2=20 models the length is 100 km and it 
is only reasonable that the basal layer has to be ra­
ther mobile for extrusion to occur. The calculation 
puts 1015 poise as the maximum limit for the vis­
eosity which permits extrusion of layer l. This is 
visualized in Fig. 5, numerical detailes are reported 
in Tables l and 3. 
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Fig. 4. Right half of spreading double layer viscous structure. Stippled outline shows initial profile con­
taining passive markers; aspect ratio R2=LIH2=S. Layer l not shown in A; in B and C thickness H1 
greatly exaggerated. Solid profile and markers define deformation after S 105 years had the initial velo­
city been eonstant durin9 that time. Thickness H2=S000m, H1 =SOm, density of both layers 2.8g/em3, 
viseosity of layer 2 is 102 poise in all models, viseosity of layer l is 1022 poise in A, 1017 poise in B and 
1016 poise in C. See text and Tables l and 2. 
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Fig. 5. Spreading double layer viscous structure with aspeet ratio R2=LIH3.
=20, H2=S000m, H1 =SOm 

(not shown in B and �reatly exaggerated in A), viseosity of layer 2 is 102 poise in both models, vis­
eosity of layer l is 102 in B and 1015 in A .  Density is 2.8g/em3 in both layers. 
Initial profile with passive markers slippled in A. Solid outline and markers define deformation after 
S. 105 years had the initial veloeity been unehanged. See text and Table 3. 
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Table 3. Horizontal, U1 and U2, and vertical, V1 and V2, 
velocity in cm/year at differen levels at the front face of 
Iayer l and 2 in mode! with aspect ratio R2=20. Ni gives 
high t of level in each layer, expressed in parts of the full 
heights H1 and H2. Note that U1 assumes maximum at 
level between Ni=.6 and .7 in layer l, and that U2 shows 
a small increases toward the base, assuming maximum 
value at the contact between the two layers. The latter 
condition is evidence of drag from the extruding mass of 
the basal layer. 

H2=5000m, H1 =50 m, R2=20, 1]2= 1022 poise, 1]1 = 1015 
poise Q1=Q2=2.8g/cm3. 

u l U2 VI V2 Ni 
5.375085 5.370486 -.002535 -.211332 l 
6.448688 5.371345 -.002295 -.190465 .9 
7.164267 5.372115 -.002004 -.169594 .8 
7.521820 5.372796 -.001680 -.148720 .7 
7.521349 5.373389 -.001342 -.127842 .6 
7.162853 5.373893 -.001006 -.106962 .5 
6.446332 5.374308 -.000692 -.086080 .4 
5.371786 5.374635 -.000416 -.065195 .3 
3.939215 5.374874 -.000196 -.044309 .2 
2.148620 5.375024 -.000052 -.023423 .l 
0.000000 5.375085 -0.000000 -.002535 o 

Models with aspect ratio R2=100 and 200 

With aspect ratio 100 or more, 5000 m thick structu­
res will extend horizontally 500 km or more; models 
with R2=200 will initially extend 1000 km across the 
base. 

Numerical models with dimensions of this order 
are believed to be informative as regard the motion 
of thrust sheets. 

Obviously a plot of models with R2=100 or 200 
on a page of the actual size is hardly meaningful -
the plot will simply be a Iine across the page no 
more than a couple of milimeters thick. Relevant 
results from the computation are therefore only 
presented numerically, Tables 4 and 5. 

Again the significant geometrical and mechanical 
properties are: H2=5000 m, H1 =50 m, 112= 10

22 

poise and g1=g2=2.8gm/cm3. Tables l, 4 and 5 dis­
play the velocities at selected values of llt· As ex­
pected w hen lJt =112 the n the velocity at correspond­
ing points is less for morleJ R2=200 than for morleJ 
R2= 100, and both st ruetures are considera bly less 
mobile than models R2=2, R2=5 and R2=20 pro­
vided also the latter are compared under the con­
dition lJt =l]2. 

Howeve r, the most interesting and perhaps 
somewhat surprising result obtained is that models 
with large aspect ratios move faster than models 
with smaller aspect ra tios if the viseosity of the basal 
stratum is less than certain limits, even if the high 
viseosity of Jayer 2 remains unchanged. The com-
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Table 4. Horizontal, U1 and U2, and vertical, V1 and V2, 
velocity in cm/year at differen leve) at the front face of 
layer l and 2 in mode! with aspect ratio R2=100. Ni gives 
height of leve) in each layer, expressed in parts of the full 
heights H1 and H2• Note that U1 assumes maximum at 
leve! between Ni=.7 and .8 in layer l, and that U2 shows 
a small increases toward the base, assuming maximum 
value at the contact between the two layers. The latter 
condition is evidence of drag from the extruding mass of 
the basal layer. 

H2=5000m, H1 =SOm, R2= 100, 1]1 =5·1013 poise, 1]2= 1022 

poise Q1=Q2=2.8g/cm3. 

u l U2 VI V z Ni 
26.865664 26.864924 -.002065 -.222380 l 
29.385798 26.865063 -.001829 -.200349 .9 
30.748887 26.865187 -.001569 -.178318 .8 
30.954932 26.865297 -.001295 -.156287 .7 
30.003932 26.865392 -.001021 -.134255 .6 
27.895888 26.865474 -.000757 -.112224 .5 
24.630799 26.865540 -.000516 -.090192 .4 
20.208666 26.865593 -.000307 -.068161 .3 
14.629488 26.865631 -.000144 -.046129 .2 

7.893266 26.865655 -.000038 -.024097 .l 
0.000000 26.865664 -0.000000 -.002065 o 

parison is of course made among models whose vis­
eosity of corresponding layers are the same. As an 
example, assume a basal layer whose effective vis­
eosity compares with that often accepted for rock 
salt, say 1017 poise. Let the viseosity of layer 2 re­
main at the usua110

22 
poise. Under these conditions 

Table 5. Horizontal, U1 and U2, and vertical, V1 and V2, 
velocity in cm/year at differen levels at the front face of 
layer l and 2 in mode! with aspect ratio R2=200. Ni gives 
height of leve! in each layer, expressed in parts of the full 
heights H1 and H2. Note that U1 assumes maximum at 
leve) between Ni=.6 and .7 in layer l, and that U2 shows 
a small increases toward the base, assuming maximum 
value at the contact between the two layers. The latter 
condition is evidence of drag from the extruding mass of 
the basal layer. 

H2=SOOOm, H1 =SOm, R2=200, 1]1 =1013 poise, 1]2= 1022 

poise, Q1 =Q2=2.8g/cm3 

u l U z VI V z Ni 
53.735459 53.735006 -.002520 -.212086 l 
64.266456 53.735090 -.002280 -.191129 .9 
71.263110 53.735166 -.001990 -.170173 .8 
74.725421 53.735234 -.001668 -.149216 .7 
74.653389 53.735292 -.001331 -.128260 .6 
71.047014 53.735342 -.000998 -.107303 .5 
63.906297 53.735383 -.000686 -.086347 .4 
53.231237 53.735415 -.000412 -.065390 .3 
39.021834 53.735439 -.000195 -.044433 .2 
21.278088 53.735453 -.000052 -.023477 .l 

0.000000 53.735459 -0.000000 -.002520 o 
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the data in Table l demonstrate that the rate of for­
ward motion increases very markedly indeed, when 
the aspect ratio becomes !arge. Consider the top 
edge of the front face which moves with the har­
izontal vetocity U2=.472 for R2=2, 1.336 for R2=5, 
5.203 for R2=20, 15.642 for R2=100 and not less 
t han 17.184 for R 2 = 200, all in cm/y ear. 

This obviousy too fast spreading will be moder­
ated by higher effective viseosity of the real rocks, 
by rock members with finite strength in the hetero­
geneous natural structures, by less height of the 
natural profiles and by their gentler slope. 

In accord with the !arge aspect ratios of the pres­
ent models the critical viseosity for extrusion of 
layer l is small, viz. 5·1013 poise for the models with 
aspect ratio 100, and 1013 poise for models with 
aspect ratio 200, Tables 4 and 5. 
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Strain in the basal layer 

The !arge number of numerical tests performed on 
models similar to those described here have given 
interesting information on the behaviour of the 
basal layer in response to changing viscosity. 

Let all parameters be eonstant except viseosity TJt 
in a modet with aspect ratio R2=5, heights H2=5000 
m and H1=50 m, viseosity T]2=10

22 
poise and den­

sity Q1 =Q2=2.8 g/cm3• 
The strain in the basal layer is visualized by defor­

mation of the initially straight, vertical passive 
markers shown stippled in the initial profile of layer 
l, see Fig. 6A where the thickness is exaggerated by 
a factor 40. As the viseosity of layer l diminishes 
from Tj1=5 1016 to 9 1015 poise through steps 4·1016, 
3·1016, 2·1016, 1.5·1016, 1016 to 9 ·1015 poise the verti-
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A L 
Fig. 6. Strain in layer l in spreading double layer viscous structure. Layer 2 not shown. H2=5000m, 
H, =SOm, R2=5, viseosity of layer 2 is 1022 poise and density of bot h layers 2.8g!cm3. Viseosity of layer 
l is 5·1016 in B, 4·1016 in C, 3·1016 in D, 2·1016 in E, 1.5·1016 in F, 1016 in G and 9·1015 in H, all in 
poise. Initial profile and undeformed passive markers slippled in A where thickness H1 is exaggerated 
by a factor 40. Profile of layer l and distorled markers would have been as shown for different viseosi­
ties in B to H had the initial vetocity been unchanged during 5 105 years. The increasingly Iong ex­
truded lobe in D, E, F, G, H visualizes the magnitude of the initial vetocity of extrusion rather than 
the final shape of the extruded material. 
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cal squeezing and the rate of extrusion are intensi­
fied. If the viseosity of layer l is relatively high the 
passive markers are chiefly affected by the harizon­
tal motion of layer 2 which tilts the markers by dis­
placing their top in the direction of motion. (At the 
same time the small vertical compression and har­
izontal extension of layer l give the markers a 
gentie curvature, the convex side facing down to the 
right; see Fig. 6, B and C). 

If the viseosity of layer l is gradually decreased 
the intensified extrusion makes its effect on the 
strain in layer l more and more markedly as is 
visualized by the changing shape of the strain mark­
ers in Fig. 6. It is interesting to note how the leve! 
of maximum harizontal flow rate gradually rnaves 
coneardant with the decrease of the viseosity ll� > 
from the contact against layer 2 to the central leve! 
in layer l, where maximum flow rate (du e to maxi­
mum extensive strain rate) re mains even if the vis­
eosity is further decreased. (Fluid dynamicist 
readers will recognize that the type of flow devel­
oped in layer l is not unlike "Couette flow" which 
is characterized by slow non-inertia! flow in the 
space between parallel plates, one of which rnaves 
with or against the fluid. Cole, 1962, p. 86. The ver­
tical compression which is necessary to drive the 
"fluid" flow in the present models is however not 
active in normal Couette flow, in w h ich al so the ve­
locity of flow is eonstant along the channel. 

The type of strain in layer l is essentially a combi­
nation of simple shear parallel to the layering and 
pure shear with axis of maximum extension parallel 
to the layering; that is, maximum extensive strain 
of the pure sh ear part coincides with the s hear direc­
tion in the simple shear part. Within narrow contact 
zones along the base and along the contact with 
layer 2, the strain is chiefly simple shear; in a nar­
row zone along the leve! of maximum harizontal 
motion the strain is essentially pure shear. In the 
intervening space on either side of maximum exten­
sion pure and simple sh ear occur tagether, the rela­
tive partition of the two types changing gradually 
from simple shear along the contacts to pure shear 
within the zone of maximum harizontal flow rate. 

The strain discussed here is associated with a 
pressure gradient painting from the edges of layer l 
toward the center. The pressure gradient assumes 
maximum value at the edges and diminishes toward 
the center where it becomes zero. The harizontal 
flow in layer l increases in intensity from zero at the 
central cross seetian to maximal values at the two 
ed ges. 
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