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The methods of the companion paper (Gower 1976), using two of the proposed methods
for estimating growth vectors (principal components and factor analysis), are applied
to two species of Paleocene planktic foraminifers. In most cases, the results for the
principal components estimates differ but slightly from those yielded by a growth vector
from maximum likelihood factor analysis. The growth-free canonical variate means can
be applied to comparisons between species observed at different periods of time.
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Introduction

T. P. Burnaby’s interest in growth invariance grew
out of his research on Carboniferous pelecypods, a
group of invertebrates showing additive growth
and lacking a terminal growth stage. He observed
that samples of these pelecypods always consisted
of a number of individuals at different stages of
growth which made statistical comparisons of their
means biologically misleading. He realized that
unless it is possible to be precise about the growth
stages of a species (this can be done for vertebrates
with clearly identifiable terminal growth criteria,
vertebrate teeth, crustaceans), many kinds of sta-
tistical analysis become pointless if applied to
growth-confounded data. This is particulatly true
of multivariate statistical methods using generalized

Table 1. Pooled within-groups covariance matrix and group

means for Subbotina psendobulloides
(N = 278; groups = 6).

distances, linear discriminant functions or canonical
variate analysis.

Burnaby (1966) found a logical solution to the
problem of obtaining growth-invariant versions of
the above-mentioned methods. He couched his
development in terms of mixtures of growth
stages, ecologically confounded size differences,and
differences ascribable to sexual dimorphism. The
theoretical concepts involved are treated in the
companion paper by J. C. Gower (1976). Here, we
shall be concerned with testing the theory on fossil
data.

Method of analysis

Gower (1976) describes four methods for esti-
mating a matrix, K, the columns of which are £
growth vectors. The coefficients of these growth
vectors give linear combinations of the v variates
that have been measured on each of the 7 fossil
specimens. Two of the methods proposed by Gower

Pooled covariance matrix
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Table 2. Pooled within-groups covariance matrix and group
means for Globoconusa daubjergensis (Bronniman)
(N = 145; groups = 4).

Pooled covariance matrix

0,0240

0,0207 0,0227

0,0230 10,0215 0,0264

0,0233 0,0194 0,0233 0,0285

0,0210 0,0216 0,0216 0,0207 0,0255

0,0216 0,0208 0,0216 0,0192 0,0202 0,0252
Group means N
5,0198 4,8471 4,6717 4,5225 4,4162 42545 26
5,0056  4,8723 4,6776 4,5338 4,4626 14,2588 21
5,0152  4,8263 4,6614 4,5466 4,4073 4,2385 38
5,0754 49154 4,7107 4,5974 4,5085 4,3407 60O

groups covariance matrix, W, calculated from the
logarithms of the variates. The growth effects are
then considered to be the major source of varia-
tion within each group and can be represented by
the first few principal components.

The second method of internal estimation obtains
the growth effects by factor analysis. As many
factors as seem consistent with the data are fitted
and the first 2 of these are taken as the growth
vectors. As in the first method, the £ growth
effects are considered to contribute the maximum
variation in the fossil groups.

The estimation of the growth vectors is un-
doubtedly a troublesome part of the Burnaby
approach and one to which he gave much thought.
It seems to us, however, that in many cases, the
internal methods of estimation here used may
offer a reasonable, although necessarily inferior,
alternative to the external methods.

Once K has been estimated, it is possible to
obtain

Q=I-KKK) 'K

which projects the values of the specimens onto
a space that is orthogonal to the space of K. These

Table 3. Latent roots and vectors of the within-groups
covariance matrix for Swbbotina psendobulloides.

1 2 3 4 5 6

Latent roots

0,1129 0,0094 0,0070 0,0047 0,0022 0,0011
Latent vectors

0,3860 —0,1291 0,2063 —0,1784 —0,3120 0,8140
0,4032 0,1582 —0,1402 —0,0539 —0,7730 —0,4386
0,4069 —0,1071 —0,0252 0,8992 0,1117 0,0363
0,3535 —0,7514 0,3035 —0,2505 0,1894 —0,3460
0,4288 0,0219 —0,7890 —0,2596 0,3463 0,0759
0,4626 0,6179 0,4717 —0,1630 0,3701 —0,1348
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values, so obtained, are free from growth effects.

As shown by Gower in the companion paper,
a generalized inverse of the Rao type can be
computed for QWQ and the inverse,

C=QQwWQ)"qQ

of Burnaby (1966) formed. Solution of the equa-
tion (CG'G—M)], where G is the matrix of v
variate means for each of the p groups, will give
canonical variates 1 that are devoid of growth
effects. Also, the Mahalanobis’ D2 distances between
the means of groups 7 and j when projected onto
the Q-space are given by

Dj = (g;—g)C(g;—g))-

Consequently, by using GCG’, it is possible to
obtain the coordinates of the group means in the
Q-space directly by the Q-mode technique of
Gower (1966). The canonical variate loadings are

then given by CG'PR~, where P is the matrix of
coordinates obtained by the Q-mode technique and

R~ is the diagonal matrix of inverted non-zero
latent roots. In the companion paper, Gower shows
that the above algebra, and therefore the computa-
tional details, can be simplified for the principal
components estimation of K and that it is not
necessary to compute a generalized inverse of QWQ
to obtain Burnaby’s inverse, C.

To obtain the principal components estimate of
K, the GENSTAT system (Nelder et al. 1973)
was used and for the factor loadings estimates, the
programs UFABY3 (Joreskog & Van Tillo 1971)
and REFADIV (Sorbom 1974). All the sub-
sequent steps in the calculations, matrix manipula-
tions and canonical variates, were obtained with

the help of GENSTAT.

The study material

The methods were tested by means of data obtained
from Malmgren (1974) on the Paleogene planktic
foraminifers, Globoconusa daubjergensis (Bronni-
man) and Swbbotina psendobulloides (Plummer),
from the type Danian in Southern Scandinavia. The
six variables measured by Malmgren on both of
these species are shown in Fig. 1.

The samples we selected for our analysis derive
from a borehole put down at Limhamn, Skdne, Swe-
den. The specimens of S. psexdobulloides come
from the levels: 1,00 m, 3,00 m, 9,30 m, 33,30 m,
40,50 m, and 67,20 m. The specimens of G.
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Fig. 2. Plot of the means for the first canonical variate against those for the second canonical
variate for £ =0, 1, and 2 for Swbbotina pseudobulloides.

Fig. 1. Measurements made on the foraminiferal species
analysed.

daubjergensis come from levels 0,00 m, 1,00 m,
3,00 m, and 9,30 m.

Results for principal components
estimates

Jolicoeur (1963) pointed out that the logarithmic
transformation of morphological variables tends

to make the results of statistical calculations inde-
pendent of the order of magnitude of the variables.
It has, as it were, a standardizing effect. The
covariance matrix becomes almost independent of
the order of magnitude and scale of the measure-
ments on which it is based. He concluded that the
tirst principal axis of such a covariance matrix
corresponds to the general direction in which

Table 4. Latent roots and vectors of the within-groups
covariance matrix for Globoconusa daubijergensis.

1 2 3 4 5

Latent roots

0,1320 0,0087 0,0054 0,0031 0,0018 0,0013
Latent vectors

0,4137 0,1267 —0,1883 0,1489 0,1624 0,8537
0,3919 —0,3396 0,1789 —0,1605 0,7899 —0,2223
0,4255 0,1076 —0,1313 —0,8293 —0,3166 —0,0462
0,4168 0,7659 0,0232 0,3028 0,0726 —0,3771
0,4034 —0,2629 0,7356 0,2150 —0,4224 0,0487
0,3972 —0,4488 —0,6112 0,3555 —0,2564 —0,2739
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organisms have changed while growing and it may
be looked upon as a path along which growth has
progressed further for larger than for smaller
individuals.

In our present study, six variates were measured
on each of 278 specimens of S. pseundobulloides
and each of 145 specimens of G. dawbjergensis
(see Fig. 1). The logarithms were taken of these
two sets of data from which the pooled within-
groups covariance matrices were obtained (repre-
senting 6 samples for the former species and 4
samples for the latter). This information is pre-
sented in Tables 1 and 2. From these matrices, the
principal components were computed. These are
given in Tables 3 and 4 for the two species.

Growth-free canonical variate analyses were then
made for each of the species for £2=0, 1, and 2.
The analysis corresponding for £ =0 is, of course,
the standard one of canonical variates where no
growth effects are extracted. The analyses with
k=1 and £ =2 correspond to the removal of
one and two principal components as growth
vectors, respectively.

Tables 5 through 12 contain the squared genera-
lized distances, the canonical variate loadings and
the canonical variate means resulting from the
analyses of the two sets of specimens for the
three levels of 4. In Fig. 2, the means of the
six samples are plotted relative to the first two
canonical variate axes for £=0, 1, and 2. The
means for £ =1 and & =2 are seen to be similar,
which reflects the slight difference made to the

Table 5. Squared generalized distances for Swbbotina
pseudobulloides for k=0, 1, 2.

E=0

10,0000

22,8677 0,0000

31,9539 4,4016 0,0000

4 11,5322 0,8623 3,6189 0,0000

50,7524 29727 0,8738 1,9316 0,0000

6 1,3623 2,6748 3,1345 10,7847 2,2441 0,0000
E=1

10,0000

22,8647 0,0000

30,7654 3,0867 0,0000

4 1,3496 0,7246 1,3157 0,0000

50,2759 2,4150 0,7146 0,6821 0,0000

6 11,0088 2,3848 0,2947 10,7563 0,5923 0,0000
E=2

10,0000

22,8430 0,0000

30,7495 3,0120 0,0000

4 1,3096 0,6042 1,3101 0,0000

5 02202 2,2688 0,7021 0,6807 0,0000

6 0,9927 23103 0,2947 0,7515 0,5801 0,0000

Bull. Geol. Inst. Univ. Uppsala, N.S. 7 (1976)

Table 6. Squared generalized distances for Globoconusa
daubjergensis for k=0, 1, 2.

E=0
10,0000
20,6592
30,1904
40,9841

E=1

10,0000
20,6519
3 0,1890
40,7671

=
0,0000
0,6252
0,0610
0,7322

0,0000
0,7637
0,6453

0,0000

0,9417 .0,0000

0,0000
0,7476
0,5020

0,0000

0,6865 0,0000

0,0000
0,4768
0,5015

0,0000
0,3892

AN N = A

0,0000

squared generalized distances when two principal
components are removed instead of one (see Table
5). When, however, no principal components were
taken out (£ = 0), the configuration of the means
was substantially different from those for &—
1, and 2. This illustrates the comparatively large
change made to the distances by removing one or
two principal components. It is this change that
we are attributing to the variation due to growth.

For £#—=0, the means of samples 3 and 6 are
relatively far apart (D2 = 31345) but once the
presumed growth variation has been removed, these
two samples are much closer together (D2 =
0,2947). In fact, all the distances are reduced by

Table 7. Canonical variate analysis for Swbbotina
psendobulloides for k=0

Latent roots

1 2 3 4 5
3,1008 1,3326 0,6374 0,2336 0,0235
Canonical variate loadings
1 2 3 4 5
—1,6494 —2,0139 —17,4327 —2,5077 15,2510
4,7737 0,3278 —8,0457 —2,6102 —16,2890
—8,4805 9,7136 0,9643 3,7573 —0,0948
5,6673 —3,3072 7,2132 8,2769 —6,8715
2,4804 0,9962 7,2153 —7,5067 2,5701
2,4981 —1,1284 7,9632 2,5453 5,4067
Coordinates of means
1 2 5] 4 5
—0,2762 0,3301 —0,5245 0,2498 0,0258
0,9390 —0,7096 0,0179 0,1451 —0,0435
—1,0794 —0,3072 0,4137 0,1008 0,0420
0,7064 0,1001 0,0143 —0,2162 0,1046
—0,6122 —0,1777 —0,2669 —0,3043 —0,0652
0,3224 0,7643 0,3455 0,0249 —0,0636
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Fig. 3. Plot of the means of the first canonical variate against stratigraphical position for 2 =0,

1, and 2 for Swbbotina psendobulloides.

the removal of principal components because the
initial distances (£ = 0) are being partitioned into
two components which express the distances pro-
jected onto the growth-space and those projected
onto the space orthogonal to the growth-space.
Even though these distances are smaller, the
samples are more distinct because the minimum
distances between sample means required for
significance are based on reduced within-sample
variation. So, for purposes of discrimination, remo-
val of the growth effect is important.

The chronological order of the samples, from
oldest to youngest, is 1—6—5—4—3—2. In Fig.
3, the sample means for the first canonical variate
have been plotted against their chronological (strati-
graphical) order. As might be suspected from the
previous figure, it is samples 1, 4, and 6 that show
the most divergence resulting from the removal of
"growth” variation. What is perhaps more inter-
esting when interpreting such a plot is the pattern
of oscillation of the sample means with time

Table 8. Canonical variates analysis for Subbotina
psendobulloides for £ = 1.

Latent roots

1
2,2298

Canonical variate loadings

1

1,5126
—4,0535
12,9584
—6,6390
—1,6893
—2,4882

Coordinates of means

1
0,4676
—1,1577
0,5503
—0,4440
0,3066
0,2772

2 3 4
0,6467  0,2667  0,0619

2 3 4
17,9109  0,4724 15,5306
7,2746  5,9664 —16,3598
—1,6057 —2,6835 —1,4948
—6,8857 —7,5410 —7,8315
—7,5132  6,7275  4,1577
—7,6466 —3,7076  4,7446

2 3 4
0,5034 —0,1826 —0,0667
0,0329 —0,1904 —0,0278
—0,3420 —0,2395  0,1348
—0,0502 0,2503  0,0903
0,2902  0,2569  0,0392
—0,4342  0,1052 —0,1698

0,0001

5

—249,7511
—98,3832
19,6511
52,2846
79,9098
162,8214

5
0,0043
—0,0033
—0,0010
0,0069
—0,0071
0,0001
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Fig. 4. Plot of the means for the first canonical variate against those for the second canonical

variate for £ =0, 1, and 2 for Globoconusa danbjergensis.

Table 9. Canonical variates analysis of Swbbotina
psendobulloides for b = 2.

Latent roots

1 2
2,2010 0,6438
Canonical variate loadings
1 2
1,7033 17,8998
—4,2569 7,4935
13,1791 —1,8563
—5,7706 —7,4621
—1,8026 —7,3548
—3,2226 —7,3141
Coordinates of means
1 2
0,4836 0,4905
—1,1369 0,0262
0,5500 —0,3500
—0,4612 —0,0342
0,2913 0,3012
0,2731 —0,4338

and how this has been altered by the removal of
growth variation. Such a pattern through time
indicates evolutionary changes and is useful for
seeing whether similar changes occur for other
species sampled at the same locations.

We now consider the results for the second
species, G. daubjergensis. Table 6 shows the squa-
red generalized distances between the means of
the four samples. Samples 2, 3 and 4 were taken
from the same stratigraphical levels as samples
2, 3 and 4 of the previous species. Here we see
that the distances do not reduce so dramatically
for £=0, 1, and 2 as for S. pseudobulloides and
that the removal of growth wvariation within
samples, contributes less than in the other species.
Fig. 4 shows the configuration of means to be
similar for all three values of 4 However, even
though the distances have not been reduced much
by the removal of growth variation, the minimum
distance that separates the means of two distinct
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Fig. 5. Plot of the first canonical means against stratigraphical position for £=0, 1, and 2 for

Globocorusa daubjergensis.

samples may have been, and so the discrimination
may have been improved.

Fig. 5 shows the plot of the means of the first
canonical variate against stratigraphical order. The
pattern is again a characteristic one of oscillation
with time comparable with the pattern seen in
Fig. 3 for S. pseudobulloides. However, these
patterns could have been compared satisfactorily
if the growth variation had not been extracted and
the inclusion of more common samples would be
required to show anything conclusive.

Results using factor loading estimates

As with principal components estimates of
growth, the logarithms of the six variates measured
on the specimens of the two foraminiferal species
were used to obtain pooled within-sample co-

Table 10. Canonical variates analysis of Globoconusa
daubjergensis for k= 0.

Latent roots
1
0,6522

Canonical variate loadings

1
—12,5609
3,4289
—6,3700
5,1141
6,7507
7,3496

Coordinates of means

1
—0,3888
0,2413
—0,3909
0,5385

2
0,3056

2
11,6357
—6,1108
—8,4808
2,0156
—2,6028
5,6981

2
0,0006
—0,4421
0,1407
0,3007

0,0882

9,1919
5,0991
1,2442
—11,3165
—2,9314
0,3018

0,2138
—0,0434
—0,1994

0,0291
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Tabzle 11. Canonical variates analysis of Globoconusa
daubjergensis for £ =1.

Latent roots

1 2 3
0,5408 0,2623 0,0829
Canonical variate loadings
1 2 3
—16,0170 6,8459 8,6467
4,1708 —5,9667 4,6145
—5,8802 —11,7332 —1,2762
4,8337 3,8941 —10,8967
7,2445 —0,7606 —2,6349
6,4349 8,0106 1,9197
Coordinates of means
1 2 3
—0,3661 —0,0842 0,1984
0,3506 —0,3579 —0,0533
—0,3690 0,1000 —0,1953
0,3845 0,3421 0,0502

variance matrices, already listed in Tables 1 and
2. These were then subjected to factor analyses to
fit as many factors as were consistent with the
data. For both sets of data, either one or two
factors were computed. As suggested by Gower
(1976), if two factors were extracted, then only
the first of these was attributed to growth effects.
These growth vectors are given in Tables 13, 15,
17, and 20. The resulting squared generalized
distances and the canonical variate loadings and
means appear in Tables 13 through 20.

Kuhry et al. (1976) have considered in some
detail the problem of estimating a multivariate

Table 12. Canonical variates analysis of Globoconusa
daubjergensis for k= 2.

Latent roots

Bull. Geol. Inst. Univ. Uppsala, N.S. 7 (1976)

Table 13. The growth vector obtained from a maximum

likelihood factor analysis of the covariance matrix for

Subbotina psemdobulloides, and the resulting squared
generalized distances.

Growth vector
1 2 5 4 ) 6
0,0650 0,0680 0,0660 0,0610 0,0730 0,0770

Squared generalized distances

1 0,0

22,8295 0,0

30,7655 2,7485 0,0

41,2745 0,7646 11,0656 0,0

50,3036 2,2235 0,6977 0,5443 0,0

6 09761 2,4933 0,2041 0,7716 10,5756 0,0

growth vector by a one factor solution. Sérbom’s
(1974) method of maximum likelihood factor
analysis, in which no assumptions are made for
uncorrelated errors, was thought to yield a satis-
factory solution, as it takes biological constraints
into account. Joreskog & Van Thillo (1971) give
a rapidly convergent algorithm for maximum likeli-
hood factor analysis. In the following, we consider
examples of the residual covariance approach.
We begin with our analyses of S. pseudobulloi-
des. The growth vector estimated by extracting
one factor using maximum likelihood factor analy-
sis (Joreskog & Van Thillo 1971) of the covariance
matrix was used to compute squared generalized
distances (Table 13), which were subsequently
used in a canonical variates analysis (Table 14).

Table 14. Canonical variate analysis of Swbbotina psendo-
bulloides for £ = 1, resulting from maximum likelihood
factor analysis of the covariance matrix.

Latent roots

1 2 3
0,4350 0,2586 0,0029
Canonical variate loadings
1 2 3
—17,0445 9,0035 2,5782
2,0658 —5,7598 18,4632
—6,6665 —11,2458 —8,7230
10,1243 1,7221 2,7786
6,8059 —1,3918 —9,0252
5,3179 7,9576 —5,3043
Coordinates of means
1 2 3
—0,4226 —0,0308 0,0314
0,2856 —0,3810 —0,0017
—0,2191 0,0884 —0,0423
0,3561 0,3234 0,0126

1 2 3 4 53
2,0801  0,6447 02619 00523  0,0006
Canonical variate loadings
1 2 3 4 5
1,1807 17,8532 0,7124 16,3392 —8,1876
—3,6866  7,3876  5,5094 —17,1672 7,7698
13,0217 —1,4658 —2,9400 —1,0709 —1,0330
—6,4121 —69497 —7,6919 —7,6192 —1,2692
—1,4124 —7,4751 6,8346 4,3392 —6,2927
—2,4837 —7,7461 —3,3328 4,2078  7,9066
Coordinates of means
1 2 ) 4 b
0,4680  0,5082 —0,1967 —0,0464  0,0094
—1,1417  0,0210 —0,1766 —0,0371 —0,0062
0,4650 —0,3482 —0,2298  0,1290 —0,0037
—0,3944 —0,0483 0,2547 0,0847 0,0154
0,2580  0,2897 0,2571 0,0258 —0,0161
0,3451 —0,4224 0,0912 —0,1560  0,0013
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Table 15. The growth vector obtained from a one factor

model using Sorbom’s factor analysis of the covariance

matrix for Subbotina psendobulloides, and the resulting
squared generalized distances.

Growth vector
1 2 3 4 5 6
1,0000 1,0410 1,1220 0,8240 1,1530 1,1850

Squared generalized distances

0,0

2,8012 0,0

0,8329 3,7600 0,0

1,4497 0,5649 1,8069 0,0

0,3288 2,8133 0,7078 1,0512 0,0

1,0833 2,0566 10,6150 0,7265 0,8531 0,0

NN R N =

The squared generalized distances are close to the
values obtained for the principal components
estimate of the growth vector (cf. Table 5, &=
1) and, consequently, the coordinates of the canoni-
cal variate means are found to be similar in all
tive significant vectors. Because of these similari-
ties, we do not present plots for these results as the
figures closely resemble Figs. 2 and 3.

Table 15 shows the growth vector (£ =1) when
Sorbom’s (1974) method is utilized to estimate
one factor from the within-samples covariance
matrix. His algorithm allows the residuals to be
correlated as this may otherwise be considered an
unrealistic constraint from the biological point of
view. The squared generalized distances are again

Table 16. Canonical variate analysis of Sxbbotina psendo-

bulloides for k=1, resulting from Sorbom’s (1974)

factor analysis of the covariance matrix using a one
factor model.
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Table 17. The growth vector obtained from the first

factor of a two factor model using Soérbom’s (1974)

factor analysis of the covariance matrix for Swbbotina

psendobulloides, and the resulting squared generalized
distances.

Growth vector

1 2 3 4 5 6

0,6160 0,4399 0,5503 0,6200 0,4520 0,4868
Squared generalized distances
1 0,0
22,8351 0,0
30,8725 3,6630 0,0
41,5275 0,8497 2,6769 0,0
S 0.2230 2,6734 0,7766 1,4982 0,0
6 1,3598 12,6583 2,1584 0,7843 1,7876 0,0

similar to those obtained from principal compo-
nents (£=1), although some values are closer
to the distances obtained by maximum likelihood
factor analysis, discussed above. The canonical
variate means and loadings obtained from these
distances (Table 16) again only deviate slightly
from those of the principal components approach.
However, the distances did tend to be slightly
larger and therefore the canonical variate means
are further apart, showing that less variation has
been removed by the elimination of growth by
this particular estimate.

When a two-factor model is fitted to the co-

Table 18. Canonical variate analysis of Subbotina psendo-

bulloides for k=1, resulting from Sorbom’s (1974)

factor analysis of the covariance matrix using the first
factor of a two factor model.

Latent roots

1 2 3 4 5
2,5655  0,6551  0,2348 0,1192  0,0014
Canonical variate loadings
1 2 ) 4 5
2,6936 18,4595 1,6367 —15,6522 —6,5309
—4,9059 6,7436 3,9027 18,2701 6,1081
12,3047 —2,1909 —3,4935 1,8142 —1,0320
—7,3993 —7,0497 —8,0357 5,8695 —2,0153
—1,6604 —7,1700 7,1784 —4,5579 —5,8852
—2,8531 —7,5490 —2,8987 —4,2056  8,2503
Coordinates of means
1 2 3 4 5
0,4415  0,4763 —0,2325 0,1031  0,0112
—1,1708  0,0649 —0,1597 —0,0595 —0,0145
0,7220 —0,3246 —0,1318 —0,2171  0,0003
—0,5331 —0,0469 0,2197 —0,0429 . 0,0260
0,4258  0,3037  0,2994 —0,0196 —0,0180
0,1146 —0,4735  0,0049  0,2360 —0,0050

Latent roots

1 2 3 4 5
2,6367 1,1181 0,4913 0,1303 0,0143
Carnonical variate loadings
1 2 3 4 5
—7,3224 —12,0254 9,0853 12,4574 5,2225
6,6102 2,2470 13,7017 —12,4718 —6,0130
—11,1153  6,7834 —19761 —2,2157 —0,6151
6,7433  —0,5148 —8,7414 —7,8062 —5,3153
3,3333 4,1256 —3,9271 10,6473 —2,7078
41742 2,3431 —6,8647 —19328  8,8043
Coordinates of means
1 2 3 4 b}
—0,4956 —0,0108 0,3189 —0,2357 0,0390
1,0333  —0,5345 —0,1292 —0,1024 —0,0289
—0,8184 —0,2394 —0,4794 0,0447 0,0254
0,6322 0,1979 0,1217 0,1790  0,0728
—0,4858 —0,2374 0,3229 0,1660 —0,0621
0,1342 0,8243 —0,1550 —0,0516 —0,0462
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Table 19. The growth vector obtained from a maximum

likelihood factor analysis of the covariance matrix for

Globocorusa daubjergensis and the resulting canonical
variate analysis.

Growth vector

1 2 3 4 S 6
0,0650  0,0620  0,0660 0,0650 0,0640 0,0640
Squared generalized distances
1 0,0
2 0,6490 0,0
3 0,1888 0,7433 0,0
4 0,7222 04771 0,6363 0,0
Latent roots
1 2 3
0,5214  0,2513  0,0815
Canonical variate loadings
1 2 3
—16,4909  5,7456  8,5771
4,4105 —5,8566  4,5265
—5,2693 —12,0752 —1,7009

4,7078  4,3670 —10,7580
7,2693 —0,3375  2,5649
5,8592 88,1931  2,1489

Coordinates of means
1 2 3
—0,3580 —0,1034  0,1940

0,3722 —0,3350 —0,0556
—0,3639  0,0920 —0,1941
0,3497  0,3464  0,0557

Bull. Geol. Inst. Univ. Uppsala, N.S. 7 (1976)

Table 20 shows the growth vector obtained from
the first of two factors estimated from the within-
samples correlation matrix, using the program of
Joreskog & Van Thillo (1971). The distances are
slightly smaller than those obtained by principal
components (cf. Table 6, £#=1), but not those
yielded by the previous factor analytical approach.

Conclusions

The results have shown us that using the principal
components of the pooled within-samples co-
variance matrix, we could remove the major source
of variation. This variation we have interpreted as
being caused by the individuals of the foraminiferal
species having been at different stages of growth
when fossilized. As these growth differences inter-
fere with discrimination between the samples on
a purely evolutionary basis, it is important that
they be eliminated. We found the patterns produ-
ced when the growth-free canonical variate sample
means were plotted, especially against chronologi-
cal order, permitted comparisons to be made be-

Table 20. The growth vector obtained from the first

= factor of a two factor model using maximum likelihood
factor analysis of the correlation matrix for Globoconusa

variance matrix, using the Sorbom (1974) method,
and only the first factor is employed as an estimate
of the growth vector (£=1), we obtained the
squared generalized distances of Table 17. They
are much larger than the equivalent distances from
the principal components, or the above factor
analyses, and show that the removal of the growth
effect is far less impressive. The resulting canonical
variate analysis, given in Table 18, shows the
means to be farther apart.

For G. daubjergensis, similar comparisons could
be made between the results of the principal com-
ponent and factor analyses as for S. psendobulloi-
des. For instance, Table 19 shows the squared
generalized distances obtained when one factor
is estimated using the method of Joreskog &
Van Thillo (1971) on the within-samples co-
variance matrix. These are similar to the principal
component distances (Table 6, £=1). The re-
sulting canonical variate analysis loadings and
means also compare favourably, so we have not
included any plots as they correspond to Figs. 4
and 5 (k=1).

daubjergensis, and the resulting canonical variate analysis.

Growth vector
1 2 3 4 5 6

0,9220  0,9940 0,9010 0,8040 0,9110 0,8920
Squared generalized distances
1 0,0
2 0,6554 0,0
3 0,1624 0,7103 0,0
4 0,8433  0,5480  0,6469 0,0
Latent roots
1 2 3
0,5403  0,2894  0,0619
Canonical variate loadings
1 2 3
—16,8563 7,6439 5,7018
0,9558 —7,7764  0,4275
—5,4229 —9,6302 —1,4291
6,3592 4,1130 —10,0901
8,1180 —0,8067 —0,7999
7,8130  7,6087  4,9851

Coordinates of means
1 2 3
—0,4000 —0,0741 0,1640
0,3140 —0,3936 —0,0446
—0,3298 0,1348 —0,1733
0,4159  0,3329  0,0539
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tween species so as to suggest common evolu-
tionary changes.

The results of the factor analysis proved similar
to those of the principal components, especially
for £#=1. As the principal components approach
simplifies the algebraic and computational aspects
of the analysis, it is to be preferred.

Our work has been of a somewhat exploratory
nature because of the absence in the literature of
any previous applications of growth-free canonical
variate analysis. We feel this technique can be
of use in similar exercises where the major source
of variation within populations obscures variation
between populations. We are, however, not per-
suaded that any internal estimation of growth
effects is superior to the use of external growth
variables. It is to be hoped that future applica-
tions of growth-free canonical variates will en-
deavour to compare both approaches.
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