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EIGEN-THEORY IN NUMERICAL TAXONOMY 
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Abstract. The numerical-taxonomic method of principal 

coordinate analysis is discussed in relation to the general 

problem of quantitative classification. The method is illus­

trated by a biologic example involving the ostracod genus 

Buntania and a sedimentologic example treating the classifica­

tion of interstitial environments. 

INTRODUCTION 

Recently there has been a considerable growth of 
interest in the possibility of numerical methods as 
a major aid to classification of, usually, biological 
individuals. A detailed review of several methods of 
numerical analysis is given in Sokal & Sneath (1963) 
as weil as a review of the historical development 
of the subject. All of these methods begin with 
a multivariate sample but each individual may be, 
though not necessarily, from a different biologic 
population. The variates may be quantitative, 
qualitative, dichotomous or a mixture of these, 
hence, product-moment correlations may not be 
appropriate. Generally a so-called association matrix 
provides the working basis and in the present study 
that of Gower (MS) has been used. 

There is a section of the subject of Multivariate 
· Statistical Analysis which has always been titled 
"Classification". This occurs in conjunction with 
what is commonly referred to as (Multiple) Discrimi­
nant Function Analysis. As has been pointed out 
by others, this is really not a matter of classification 
per se, but rather one of identification. At !east, this 
is the interpretation that must be given as soon as 
the technique is applied to taxonornie situations. 

A moment's reflection will disclose why this must 
be so. If we consicter the statistical discrimination 
problem for the case of two populations, compatible 
with respect to k variables (populations n1 and n.) and 
we have an observational vector, 

X= (x1, ... , x k), 

it is required to find to which of populations n1 and 

n2 the vector, X, belongs. This is thus a ques­
tion of IDENTIFICATION with either of n1 and n •. 

If this is not the basic form of model desired, then 
it is wrong to employ the DISCRIMINANT FUNCTION 

in this connexion. It is weil known, that visual 
methods of traditional stamp in classification are 
deeply influenced by subjectivity. It is enough to 
compare contemporary publications in one's own 
field of research. This ma y be called the first category 

of classification problem. That is, where one already 
has a form of taxonornie classification in existence, 
bu t i t suffers from defects of several kinds, introduced 
in varying degrees by subjectivity. It is desirable to 
be able to better this, by some means or other, in 
order to introduce the element of REPEATABILITY. 

Thus if our model is a reliable one, it should be 
possible for any o·ther person in the field of research 
to be able to take the material and, without a priori 

knowledge of what has been drawn in the way of 
classificatory conclusions, end up with identically 
the same result. 

The seeond kind of classification problem occurs 
mainly in non-biologic sciences. Problems embracing 
topics stretching from Permian cyclothems, the 
classification of mineral resources, to the classification 
of archeologic objects. Here, the application is 
concerned with developing a classification scheme, on 
quantitative grounds, on little or no a priori informa­
tion. From a cursory perusal of the literature falling 
into the seeond kind of problem, it seems as though 
the models of the biologists have been employed with 
little or no modification; clearly the resolution can 
only be as good as the underlying model. 

NON-STATISTICAL NUMERICAL TAXO-
NOMY 

Modern numerical taxonomists, such as J. Rohlf and 
R. Sokal, have departed largely from the realm of 
mathematical statistics in developing their subject 
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owing, largely, to the great number of special prob­
lems and difficulties that arise when a statistical 
basis is adopted. This is, in my opinion, not always 
such a good idea, as this approach is frequently 
adopted to get around something unpleasant in the 
data. 

As is weil known, the concept of numerical 
taxonomy appears to have been horn with M. 
Adanson, the French naturalist, who formulated the 
concept in conjunction with his taxonornie studies 
on the Recent marine molluscs of Senegal, West 
Africa. 

One of his postulations was that of the princip/e 

of equal weighting of all the characters selected by the 
zoologist as diagnostic of his material (the question 
of what is to be regarded as diagnostic is, of course, 
a moot point). This principle of equal weighting 
would appear to be the one most widely practised 
among numerical taxonomists of today. The obvious 
logic employed in support hereof is, that subjective 
elements would be introduced in that the quantita­
tive zoologist would be exercising personal opinions 
and prejudice in the choice-making procedures if 
equal weighting were not resorted to. However, if 
one examines the logic behind the concept of the 
SIMILARITY COEFFICIENT of the numerical taxono­
mists, in the garb presented by Sokal & Sneath 
(1963), it soon becomes apparent, that this is an area 
in which personal opinion is permitted considerable 
rein and in actual fact, it transpires, that some of 
these similarity coefficients may only owe their un­
likeness to some form of character-weighting or 
other. 

What does the critic of equal character weighting 
have against it? The most ready-to-hand complaint 
would seem to be, that any definition of what is a 
diagnostic and useful character (often termed a 
"unit character") lies in the mind of the person 
carrying out a particular study and, of necessity, will 
be subjectively flavored. Each worker will view a 
certain situation in a different light from another. 
Hence, the claim of objectivity in conjunction with 
the principle of equal weighting is one that should 
invite a certain measure of sceptisim. 

It is natural enough to ask, whether it might not 
be possible to produce a character-weighting co­
efficient, which will in some manner compensate for 
the lack of pertinence in a ehosen character. The 
generalized statistical distance of P. C. Mahalanobis 
provides a method of character-weighting, whereby 
the introduction of a new character to a set of charac-

ters eauses little or no change in the "distance", 
if this character (characters) is (are) strongly cor­
related with characters existing in the set. We may 
state this in other terms, notably, that if a character 
conveys no new information for separating between 
two samples (or populations), the pertinent elements 
of the inverse covariance matrix of the quadratic 
form of the generalized distance will be very small, 
to use non-precise language. 

THE MEASURE OF ASSOCIATION 

The general applicability of the D'-method is, to a 
degree, limited by the difficulty of satisfactorily using 
it in conjunction with discrete characters, and there 
are some other problems, such as the a priori 

establishing of the basic groups. suggestions have 
been made, that a possible approach is by means of 
an information-theoretic quantity. This requires the 
estimation of prior probabilities for character states, 
these determining the weights of the states. Other 
opinions with respect to the weighting dilemma are 
represented in the literature. I mention this in order 
to bring out the fact, that several points of view are 
developing in the non-Adansonian sphere. 

Observations on the concept of cluster analysis in 
numerical taxonomy have been most recently given 
by Gower (1967). It is not here proposed to enter into 
a review of similarity coefficients but it does seem 
desirable to mention that Gower (MS) has proposed 
a useful measure, which leads to a positive definite 
similarity matrix. For quantitative characters with 
values xr, x2, ... Xn of character k for the total sample 
of n individuals Gower's coefficient is defined as 

(l) 

Here Rk is the range of character k. The matrix S;; 
with elements s;;k ranges in value between O and l. 
This coefficient of similarity has been used in the 
present study and has therefore been mentioned in 
detail, although there are other coefficients equally 
worthy of consideration (cf. Sheals, 1964). 

PRINCIPAL COORDINATE ANALYSIS 

Eigenanalysis of a matrix of associations 

A useful way of considering classification procedures 
is that embodied in the concept of Numerical Taxo­
nomy in the form presented by, for example, Sokal 
& Sneath (1963). An objection to this approach has 
been that the methods and procedures of numerical 
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taxonomy lack, to a considerable extent, a firm Table l. Eigenvalues and eigenvectors of association 

mathematical basis. Gower (1966) has made an matrix. 

encouraging move in a direction towards strengthen-
--------------------

ing the foundations of the subject and it is to be 
expected, that more mathematical statisticians will 
be drawn towards this area of research. As an acces­
sory to the method of principal components (an R 
technique), we shall consicler the proeecture termed 
"principal coordinates" by Gower (1966, p. 137). 

In a numerical taxonornie study, there will be 
measurements on p variates for each of n individuals. 
The interrelationships between these variates will be 
estimated by means of some form of coefficient of 
association, a;1, between all pairs of individuals. 
These form the "association matrix" A. 

We consicler the symmetric matrix A of order n. 

The eigenvalues of A are Ah ... ,An and its eigenvectors 
are bh b., ... bn. These form the matrix B of order n. 

In applying this in numerical taxonomy, one takes 
the elements of the ith row as the coordinates of a 
point, T;, in n-space. The distance, d;1, between P; 
and P1 is then given by 

Eigenvalues 

A, A2 An 
Eigenvectors 

Point T, bu bl2 btn 
r. b., b22 b2n 

bnt bn2 
-

Centraid T 

expected that a good representation of the set of 
points ma y be obtained in a reduced number of dimen­
sions when some of the eigenvalues are small. That 
is if, sa y Ar is small, the contribution of (b;r-b1r) 2 

to the distance between T; and T1 will be small. If 
Ar is !arge but the b;r corresponding to it are not 
greatly different then (b;r-b1r) 2 will be small. Hence, 
the only coordinates supplying much to the distances 
are those which display a wide range of variation in 
the elements of the eigenvectors and which are 

Thus, for rows 2 and 3 

(2) associated with a !arge eigenvalue. In common with 
what is found in principal component analysis, the 
distances may often be adequately expressed by two 
or three vectors. n n n 

di3= Lb�r+ Lb�r-2Lb2rb3r· r=l r=l r=l 
(3) 

If the eigenvectors of A are normalized so that the 
sums of squares of their elements are equal to the 
corresponding eigenvalues, 

t hen 

A = b1 b� + b2 b�+ ...  +b n b;, 

and 

(4) 

(5) 

By this means, one may represent a multivariate 
sample of size n as points T, ... Tn in a Euclidean 
space. The relationship between the eigenvalues and 
eigenvectors of the association matrix A are indicated 
in Table I. 

Gower (1966) has demonstrated that it is legitimate 
to use the methods of principal components as a Q 
technique on the coordinates of the T; to find the 
best fit in fewer dimensions. In accord with what is 
usually observed in principal components, it may be 

A further analog with R-technique principal 
components is that the elements of the first eigen­
vector may often be found to have similar elements, 
retating to the mean value of all the elements of A. 
This mean value is not important to the problem 
at hand, as the distances are invariant for any eon­
stant added to A. 

The addition of such a eonstant will,. however, 
result in different coordinate values T; and different 
eigenvalues and these new points are an orthogonal 
transformation of the original set after a change of 
origin. Interest naturally attaches to determining 
which transformation gives the best fit with a reduced 
number of coordinates. 

This mean value is unimportant in this connexion 
as the addition of any eonstant to the association 
matrix A leaves the distance between T; and T1 
invariant. Gower (1966, p. 330) adjusts for the means 
in the following way. It is always possible to adjust 
matrix A so that it has a zero eigenvalue without 
altering the distance between T1 and T1, for if ä; is 
the mean value of the ith row or column of A, and ä 
is the overall mean, a matrix 1X;1 may be defined in 
terms of the elements 
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(6) 

Inasmuch as every row and column of matrix Ot.;J 

sums to zero, 01.;1 has a zero eigenvalue. 

Computer program. The computer program used for 
the calculations first forms the association matrix A 
which is then transformed to matrix Ot.;1 by equatio� 
(6). The eigenvalues and eigenvector of matrix 01.11 

are computed and each eigenvector is scaled so that 
its sum of squares is equal to the corresponding 
eigenvalue. 

The ith row of Table I represents the coordinates 
of a set of points T; whose distances apart are given 
by the best approximations to (a;;+ a11- 2 aii)t in the 
ehosen number of dimensions. 

The computed coordinates are plotted by a simple 
plotting subroutine included in the program. 
Storage space is always a troublesame matter in a 
program of the kind considered here. The writer's 
program will take 95 individuals for any number of 
variables. The Buntonia example was run for 70 
individuals and took about 6 minutes on a CD 3600. 

In summary, the method of principal coordinate 
analysis finds the coordinates of each individual of a 
sample, referred to principal axes, which preserve 
the distances, suitably defined, between the indivi­
duals. 
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EXAMPLES 

Example l. Subdivision of a biologically homoge­
neous sample of Buntonia olokundudui Reyment and 
Van Valen. The material (70 individuals) of Buntonia 

is from the Niger Delta, West Africa. The four varia­
bles are: length of carapace, and the numbers, res­
pectively, of the anterior, posterior and lateral 
spines. The Gower association matrix is of order 
70. The eigenvalues and eigenvectors of the matrix 
given by (6) were extracted by the Jacobi procedure, 
which for the program used required 12979 iterations. 
The sum of the eigenvalues is 16.585 and the sum of 
the first two eigenvalues, approximately 11; these 
account for most of the "variation" and a reasonably 
efficient set of coordinates should be provided by the 
corresponding eigenvalues (4). The most important 
eigenvalues are shown in Table Il. 

Table Il. The targest eigenvalues of the adjusted 

association matrix. 

Number Eigenvalue Number Eigenvalue 

l 9.4578 7 0.5223 
2 2.3640 8 0.4349 
3 1.7714 9 0.3393 
4 1.0584 lO 0.3064 
5 0.7995 11 0.1966 
6 0.5629 12 0.1624 

-0.325 �::----:':::::---::-r:::::---::'=::---:-r�--.---.---.---.---.--___j 
-0.400 -0.290 -0.180 -0.070 0.040 0.150 0.260 0.370 0.480 0.590 0.700 

FIRST PRINCIPAL COORDINATE AXIS 

Fig. l. Plot of first two principal coordinates for Buntonia. 
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Fig. 2. Plot of first two principal coordinates for sedimentary data. 

Already the fourteenth eigenvalue is about 0.1 
and the successful concentration of the association 
information to the first few eigenvalues and the rapid 
taper off of the subsequent roots to near-zero values 
suggests that the classificational efficiency in this 
problem may be high and that there is a rather high 
degree of association between individuals. The plot 
of the first two coordinates (cf. Table l) is shown in 
Fig. l; the coordinates are Iisted in Table III. There 
is a clear subdivision into three groups, which is a 
reflection of the discrete nature of the variation in the 
species of Buntonia. One might intuitively expect 
such a breakdown of data of this kind; however, the 

useful feature yielded by the principal coordinate 
analysis is that the morphologic categories with the 
most in common are placed together. The elongated 
forms of the distributions are largely a result of the 
several growth stages forming the material. The 
analysis of this problem may be considered to have 
given a satisfactory result. 

Example 2: Sedimentary interstitial environmental 
categories. A survey of bottom sediments in the 
Niger Delta, made by the writer in April-May, 1966, 
suggested the possibility of several environmental 
categories with respect of the interstitial en v ironment 
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Table III. First two sets of principal coordinates for Buntonia. 

2 2 

0.64 0.05 -0.24 -0.14 -0.27 
-0.20 0.20 -0.24 -0.14 -0.23 

0.57 -0.02 -0.26 0.21 -0.18 
-0.26 -0.12 -0.25 -0.08 0.38 

0.36 -0.22 -0.17 0.31 0.40 
0.60 -0.09 -0.27 -0.22 -0.27 
0.61 -0.26 -0.21 0.47 -0.22 

-0.25 -0.14 -0.24 -0.06 -0.21 
-0.20 0.01 -0.23 0.04 -0.31 
-0.27 -0.22 -0.28 -O.o3 0.62 
-0.23 -0.14 -0.24 0.08 0.57 
-0.25 -0.12 -0.22 0.22 0.65 
-0.22 0.02 -0.21 0.48 0.64 
-0.26 -0.20 -0.28 -0.21 -0.24 

and mineral constituents of the sediment. The princi­
pal coordinate analysis did not, however, disclose 
the existence of significant groupings in the data, the 
suggestion being that there are no sharp boundaries. 
The eigenvalues decrease only slightly from root to 
roat suggesting that there is much near randoro 
variation in the material. The plot of the first two 
coordinates is shown in Fig. 2; the lack of a tendency 
for points to cluster is clearly discernible. 

Sommaire. La methode de taxonornie numerique dans !'ana­

lyse des coordines principaux est discutee en sa relation au 

probleme general de classification quantitative. La methode 

est illustree par un exemple pris de la biologie ou il est ques­

tion du genre astracode Buntania et un exemple pris de la 

sectimentologie, traitant de la classification des milieux 

interstitiels. 

2 2 2 

-0.06 -0.26 -0.17 -0.29 -0.15 
-0.14 0.43 0.16 -0.28 -0.20 

O .oJ 0.63 -0.10 -0.21 0.21 
0.26 0.60 0.12 0.66 0.04 

-0.06 -0.24 0.09 -0.24 -0.14 
-0.19 0.60 0.05 -0.23 -0.13 

O.o2 -0.25 -0.14 0.56 -0.11 
0.08 -0.30 -0.12 -0.10 0.28 

-0.03 -0.28 -0.15 -0.17 0.15 
0.26 0.68 0.17 -0.20 0.16 

-0.26 -0.28 -0.21 -0.22 0.25 
0.13 -0.17 0.30 -0.23 0.08 
0.13 -0.24 0.35 0.34 -0.23 
0.04 0.56 -0.17 0.52 -0.26 
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